PUDUCHERRY TECHNOLOGICAL UNIVERSITY PUDUCHERRY –605014

(A Technological University of Government of Puducherry)

NOTES ON AGENDA of the fifth meeting of BOARD OF STUDIES		
In		
ELECTRICAL AND ELECTRONICS ENGINEERING		
(Both offline and virtual mode)		
Held on Friday, 11 th August 2023		
Venue: Department of Electrical and Electronics Engineering Puducherry Technological University		
Time: 10:30 am		

INDEX

AGENDA FOR THE FIFTH MEETING OF BOARD OF STUDIES IN ELECTRICAL AND ELECTRONICS ENGINEERING				
1	For Approval	Page		
-		From	То	
Item 1.1	Curriculum and Syllabi for B.Tech - Electrical and Electronics Engineering offered in Constituent and Affiliated Colleges under Puducherry Technological University (<i>Effective from the Academic Year 2022 – 23</i>)	3	3	
ltem 1.2	Course Outcomes (COs) and CO-PO Articulation Matrix revised for all subjects in the B.Tech- EEE Syllabus of both PTU and Constituent / Affiliated Colleges	3	3	
2	Annexure			
Annexure I	Curriculum and Syllabi of B.Tech - Electrical and Electronics Engineering offered in Constituent / Affiliated Colleges under PTU (<i>Effective from the</i> <i>Academic Year 2022 – 23</i>)	4	148	

1	For Approval

ltem 1.1	Curriculum and Syllabi for B.Tech - Electrical and Electronics Engineering offered in Constituent and Affiliated Colleges under Puducherry Technological University <i>(Effective from</i>)
	the Academic Year 2022 – 23)

The curriculum and syllabi of B.Tech. (Electrical and Electronics Engineering) programme offered in Constituent and Affiliated Colleges under Puducherry Technological University have been prepared and placed for approval of BoS. The same is enclosed in Annexure I.

	Course Outcomes (COs) and CO-PO Articulation Matrix			
Item 1.2	revised for all subjects in the B.Tech- EEE Syllabi of			
	both PTU and Constituent / Affiliated Colleges			

The course outcomes (COs) and course outcome - program outcome (CO-PO) articulation matrix have been revised for all courses in the B.Tech –EEE syllabi of both PTU and Constituent/affiliated Colleges according to modified Bloom's taxonomy and placed for approval of BoS. The same is enclosed in Annexure I.

2 Annexure	
------------	--

	Curriculum and Syllabi of B.Tech - Electrical and Electronics
Annexure I	Engineering offered in Constituent / Affiliated Colleges under
	PTU (Effective from the Academic Year 2022 – 23)

Annexure I

Curriculum and Syllabi of B.Tech., - Electrical and Electronics Engineering offered in Constituent / Affiliated Colleges under PTU *(Effective from the Academic Year 2022 – 23)*

PUDUCHERRY TECHNOLOGICAL UNIVERSITY

Applicable to the Constituent and Affiliated Colleges of Puducherry Technological University

REGULATIONS 2022-2023

B.TECH. ELECTRICAL AND ELECTRONICS ENGINEERING

CURRICULUM

The Curriculum of B.Tech. (Electrical and Electronics Engineering) is designed to fulfil the Program Educational Objectives (PEO) and the Program Outcomes (PO) listed below.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

PEO1	To provide students with the necessary knowledge in basic sciences in general and Electrical and Electronics Engineering in particular so as to develop skills to understand Electrical and
	Electronics Engineering systems.
PEO)	To provide education and practical training to design, debug and improve reliability of Electrical
I EO2	and Electronics Engineering systems.
DEO2	To impart in-depth knowledge to build competency and capability to analyze and provide feasible
FE03	solutions for real life problems in power, control and electronics industries.
DEO4	To prepare and encourage students to succeed in leadership positions in industry and to undertake
FEU4	research leading to scientific innovations for sustainable development
	To promote student awareness for life-long learning and to inculcate sensitivity to professional
PEO5	ethics and codes of professional practices with a commitment to improve the quality of life and
	environment.

PROGRAM OUTCOMES (PO)

PO1	Apply the knowledge of Basic sciences and Engineering Sciences to provide solutions for Complex engineering problems
PO2	Competency to identify, formulate review research literature and analyze complex engineering problems pertaining to Electrical and Electronics Engineering.
PO3	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
PO4	Develop innovative thinking to create, select, and apply appropriate techniques & resources with the help of modern computational methods and tools for prediction and modeling of complex engineering tasks.
PO5	Identify, formulate, review research literature, analyze complex engineering problems and conduct original research leading to substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO6	Confident and knowledgeable to take up responsible positions in industry with the ability to work in a group as well as lead a team towards achieving technology enhancement and economic growth.
PO7	Awareness of professional responsibility with sensitivity to ethical practices.
PO8	Communicate effectively so as to interact with the engineering community and society at large. Able to comprehend and to write effective reports, design documentation, presentations, and give and receive clear instructions.

PO9	Have broad knowledge of aiding technologies necessary to recommend competitive engineering
10)	solutions in a global and societal context.
DO10	Realize the need for lifelong learning and attain good attitude to adopt to modern managements
1010	practices in a changing global scenario.
DO11	Apply ethical principles and commit to professional ethics and responsibilities and norms of the
ron	engineering practice.
	Create industry ready engineers by building strong collaboration and partnerships with the
PO12	industry through joint research projects, and also include arrangements for faculty to take up joint
	research collaboration, curriculum development and continuous education programmes.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1	Able to apply the fundamentals of mathematics, science and engineering knowledge to identify, formulate, design, investigate and solve complex engineering problems of electric
	circuits, power electronics, control systems, electrical machines and power systems
	Able to provide socially acceptable technical solutions to complex electrical engineering
PSO2	problems with the application of modern and appropriate techniques for sustainable
	development

Distribution of credits among the subjects grouped under various categories:

Courses are grouped under various categories and the credits to be earned in each category of courses are as follows:

SI. No.	Category	Credits	Course Category Code (CCC)
1	Humanities, Social Sciences and Management Courses	6+2/3*	HSM
2	Basic Science Courses (Mathematics, Physics, Chemistry and Biology)	25	BSC
3	Engineering Science Courses (Workshop, Drawing, Basics of Electrical/Mechanical/Computer etc.,)	19	ESC
4	Professional Core Courses	71	PCC
5	Professional Elective Courses (from chosen discipline)	15	PEC
6	Open Elective Courses (from other technical/ emerging disciplines)	10	OEC
7	Professional Activity Courses (Project Work, Entrepreneurship, Seminar, Internship, Comprehensive Test)	14	PAC
8	Mandatory non-Credit Courses (Environmental Sciences, Induction, Indian Constitution, Essence of Indian Traditional Knowledge, Professional Ethics)	Non-credit	MCC
	Total	160	

*Included in the 10 credits under open elective category

Semester-wise Courses and Credits

Course	Courso	CCC	SET	P	Period	ls	Credits
Code	Course		SEI	L	T	P	Creuits
FYA101	Induction Programme	MCC	-	-	-	-	0
MAA101	Mathematics-I	BSC	TY	3	1	0	4
EEA101	Basic Electrical Engineering	ESC	TY	3	1	0	4
CSA101	Programming for Problem Solving	ESC	TY	3	0	0	3
MEA102	Engineering Graphics and Computer Aided Drawing	ESC	TY	2	0	4	3
CEA101	Environmental Science	MCC	-	3	0	0	0
EEA102	Basic Electrical Engineering Laboratory	ESC	LB	0	0	3	1.5
CSA102	Programming Laboratory	ESC	LB	0	0	3	1.5
Total			14	2	10	-	
	10181				26	17	

SEMESTER-I

SEMESTER-II

Course	Course	CCC	SET	P	Period	Credits	
Code	Course		SEI	L	Т	Р	Creatis
MAA102	Mathematics-II	BSC	TY	3	1	0	4
PHA101	Physics	BSC	TY	3	1	0	4
CYA101	Chemistry	BSC	TY	3	1	0	4
HSA101	English for Communication	HSM	TY	2	0	2	3
MEA101	Workshop and Manufacturing Practice	ESC	LB	0	0	3	1.5
PHA102	Physics Laboratory	BSC	LB	0	0	3	1.5
CYA102	Chemistry Laboratory	BSC	LB	0	0	3	1.5
	Total			11	3	11	_
	1 0781			25			19.5

SEMESTER-III

Course	Course	CCC	CET	P	Period	s	Cuadita
Code	Course		SEI	L	Т	P	Creans
MAA104	Transforms, Partial Differential Equations and Statistics	BSC	TY	3	1	0	4
EEA103	Electrical Circuit Analysis	PCC	TY	3	1	0	4
EEA104	Electromagnetic Fields	PCC	TY	3	0	0	3
EEA105	Electronic Devices and Circuits	PCC	TY	3	0	0	3
EEA106	Electrical Machines - I	PCC	TY	3	0	0	3
EEA107	Signals and Systems	PCC	TY	3	0	0	3
EEA108	Electronics Laboratory-I	PCC	LB	0	0	3	1.5
EEA109	Electrical Machines Laboratory - I	PCC	LB	0	0	3	1.5
SHA102	Indian Constitution	MCC	-	3	0	0	0
	Total			21	2	6	-
	I OTAI			29			23

Course	Course	CCC	SET	Periods			Credits	
Code	Course		SEI	L	Т	Р	Creans	
ZZA3XX	Open Elective	OEC	TY	3	0	0	3	

SEMESTER-IV

Course	Course	CCC	SET	P	eriod	S	Credita
Code	Course		SEI	L	Т	Р	Cituits
SHA101	Biology for Engineers	BSC	TY	3	0	0	2
EEA110	Analog Electronics	PCC	ΤY	3	0	0	3
EEA111	Pulse and Digital Circuits	PCC	TY	3	0	0	3
EEA112	Electrical Machines - II	PCC	TY	3	0	0	3
CSA134	Data Structures and Object Oriented Programming	ESC	TY	3	0	0	3
EEA113	Electronics Laboratory - II	PCC	LB	0	0	3	1.5
EEA114	Electrical Machines Laboratory - II	PCC	LB	0	0	3	1.5
CSA135	Data Structures and Object Oriented Programming Laboratory	ESC	LB	0	0	3	1.5
	Total			15	0	9	-
	lotal			24			18.5

Course	Course	CCC	SET	Periods			Cradita
Code	Course			L	Т	P	Creatis
ZZA3XX	Open Elective	OEC	TY	3	0	0	3

SEMESTER-V

Course	Course	CCC	SET	P	Period	S	Credita
Code	Course		SEI	L	Т	Р	Creans
EEA115	Analog and Digital Integrated circuits	PCC	TY	3	0	0	3
EEA116	Power Electronics	PCC	TY	3	0	0	3
EEA117	Measurement and Instrumentation	PCC	TY	3	0	0	3
EEA118	Transmission and Distribution	PCC	TY	3	0	0	3
EEA119	Control Systems	PCC	TY	3	1	0	4
HSA102	Industrial Economics and Management	HSM	TY	3	0	0	3
EEA120	Electronics laboratory - III	PCC	LB	0	0	3	1.5
EEA121	Measurement and Control Laboratory	PCC	LB	0	0	3	1.5
	Tatal			18	1	6	-
	l otal				25		22

Course	Course	CCC	C SET	F	Period	Cradita	
Code	Course			L	Т	Р	Creans
ZZA3XX	Open Elective	OEC	ΤY	3	0	0	3

SEMESTER-VI

Course	Course	CCC	SET	P	eriod	S	Credita
Code	Course		SEI	L	Т	Р	Creans
EEA122	Power System Analysis	PCC	TY	3	1	0	4
EEA123	Microprocessors and Microcontrollers	PCC	TY	3	0	0	3
EEA2XX	Program Elective -I	PEC	TY	3	0	0	3
EEA2XX	Program Elective – II	PEC	TY	3	0	0	3
EPA101	Entrepreneurship	PAC	TY	3	0	0	2
EEA124	Microprocessors and Microcontrollers Laboratory	PCC	LB	0	0	3	1.5
EEA125	Power Electronics Laboratory	PCC	LB	0	0	3	1.5
SHA103	Essence of Indian Traditional Knowledge	MCC	-	3	0	0	0
	Total			18	1	6	_
	10181			25			18

Course	Course	CCC	SET	F	Period	Cradita	
Code	Course			L	Т	P	Creans
ZZA3XX	Open Elective	OEC	ΤY	3	0	0	3

SEMESTER-VII

Course	Course	CCC	SET	P	Period	ls	Cradita
Code	Course		SEI	L	Т	P	Credits
EEA126	Power System Operation and Control	PCC	TY	3	0	0	3
EEA127	Protection and Switchgear	PCC	TY	3	0	0	3
EEA128	Solid State Drives	PCC	TY	3	0	0	3
EEA2XX	Program Elective – III	PEC	TY	3	0	0	3
EEA2XX	Program Elective – IV	PEC	TY	3	0	0	3
EEA2XX	Program Elective – V	PEC	TY	3	0	0	3
EEA129	Power Systems Laboratory	PCC	LB	0	0	4	2
EEA130	Seminar	PAC	-	0	0	2	1
EEA131	Professional Ethics	MCC	-	2	0	0	0
	Total			20	0	6	-
	lotal				26		21

Course	Courso	CCC	CCC	CCC	SET	P	eriod	s	Cradita
Code	Course		SEI	L	Т	P	Creans		
ZZA3XX	Open Elective	OEC	ΤY	3	0	0	3		

SEMESTER-VIII

Course	Course	CCC	SET	P	Period	Crodits	
Code	Course		SEI	L	Т	P	Creans
SWA3XX	Open Elective through SWAYAM	OEC	-	0	0	0	2
SWA3XX	Open Elective through SWAYAM	OEC	-	0	0	0	2
EEA132	Comprehensive Test	PAC	-	0	0	0	1
EEA133	Internship	PAC	-	0	0	0	2
EEA134	Project Work	PAC	PR	0	0	16	8
	Total	0	0	16	-		
	10181		15				

Professional Electives	Course Code	Course	Semester
	EEA201	Electrical Safety and Quality Management	
	EEA202	Digital System Design using VHDL]
	EEA203	Special Electrical Machines	VI VI VI
Professional Elective I/II	EEA204	Digital Signal Processing	VI
	EEA205	Fuzzy Logic and Neural Networks	V I
	EEA206	Modern Control Theory	
	EEA207	Electric and Hybrid Vehicles	
	EEA208	Optimization Techniques	
	EEA209	Smart Grid	
	EEA210	Renewable Energy	
	EEA211	Embedded Systems	
	EEA212	Power Quality	
	EEA213	High Voltage Direct Current Transmission	
Professional Elective – III/IV/V	EEA214	Digital Control Systems	VII
	EEA215	Power System Restructuring and	
		Deregulation	
	EEA216	High Voltage Engineering	
	EEA217	217 Power System Economics	
	EEA218	Utilization of Electrical Energy	

List of Professional Elective Courses (PEC)

List of Open Elective Courses (OEC)

Course Code	Course
EEA301	Power Generation Systems
EEA302	System Dynamics
EEA303	Fuzzy and Neural Systems
EEA304	PLC and Industrial Automation
EEA305	Process Control Engineering
EEA306	Electric and Hybrid Vehicles
EEA307	Wiring, Estimation and Costing

Courses offered under various categories

CCC	Course Code	Course	Semester	Credit	Total Credit
	MAA101	Mathematics – I	Ι	4	
	PHA101	Physics	II	4	
	CYA101	Chemistry	II	4	
DEC	PHA102	Physics Laboratory	II	1.5	25
BSC	CYA102	Chemistry Laboratory	II	1.5	25
	MAA102	Mathematics –II	II	4	
	MAA104	Transforms, Partial Differential Equations and Statistics	III	4	
	SHA101	Biology for Engineers	IV	2	
	MEA101	Workshop and Manufacturing Practice	II	1.5	
	EEA101	Basic Electrical Engineering	Ι	4	
	CSA101	Programming for Problem Solving	Ι	3	
ESC	MEA102	Engineering Graphics & Computer Aided Drawing	Ι	3	10
ESC	EEA102	Basic Electrical Engineering Laboratory	Ι	1.5	19
	CSA102	Programming Laboratory	Ι	1.5	
	CSA134	Data structures and Object Oriented Programming	IV	3	
	CSA135	Data structures and Object Oriented Programming Laboratory	IV	1.5	
	EEA103	Electrical Circuit Analysis	III	4	
	EEA104	Electromagnetic Fields	III	3	
	EEA105	Electronic Devices and circuits	III	3	
	EEA106	Electrical Machines - I	III	3	
	EEA107	Signals and Systems	III	3	
	EEA108	Electronics Laboratory -I	III	1.5	
	EEA109	Electrical Machines Laboratory - I	III	1.5	
	EEA110	Analog Electronics	IV	3	
	EEA111	Pulse and Digital Circuits	IV	3	
	EEA112	Electrical Machines - II	IV	3	
	EEA113	Electronics Laboratory - II	IV	1.5	
	EEA114	Electrical Machines Laboratory - II	IV	1.5	
	EEA115	Analog and Digital Integrated Circuits	V	3	
PCC	EEA116	Power Electronics	V	3	71
	EEA117	Measurement and Instrumentation	V	3	
	EEA118	Transmission and Distribution	V	3	
	EEA119	Control Systems	V	4	
	EEA120	Electronics Laboratory - III	V	1.5	
	EEA121	Measurement and Control laboratory	V	1.5	
	EEA122	Power System Analysis	VI	4	
	EEA123	Microprocessors and Microcontrollers	VI	3	
	EEA124	Microprocessors and Microcontrollers Laboratory	VI	1.5	
	EEA125	Power Electronics Laboratory	VI	1.5	
	EEA126	Power System Operation and Control	VII	3	
	EEA127	Protection and Switchgear	VII	3	
	EEA128	Solid State Drives	VII	3	
	EEA129	Power Systems Laboratory	VII	2	

CCC	Course Code	Course	Semester	Credit	Total Credit			
	EEA2XX	Professional Elective – I	VI	3				
	EEA2XX	Professional Elective – II	VI	3				
PEC	EEA2XX	Professional Elective – III	VII	3	15			
	EEA2XX	Professional Elective – IV	VII	3				
	EEA2XX	Professional Elective – V	VII	3				
OEC	ZZ0XX	Open Electives offered by other Departments	III-VII	6	10			
UEC	SWOXX	Open Electives offered under SWAYAM	-	4	10			
	EPA101	Entrepreneurship	VI	2				
-	EEA130	Seminar	VII	1				
PAC	EEA132	Comprehensive Test	VIII	1	14			
	EEA133	Internship	VIII	2				
	EEA134	Project Work	VIII	8				
	HSA101	English For Communication	Ι	3				
	HSA102	Industrial Economics and Management	V	3				
HSM	HSA3XX	Humanities Open Elective offered by HSS	_	3*	6 +			
11511	полола	Department	_	5	3*/2*			
	SWA3XX	Humanities Open Elective offered under	_	2*				
		SWAYAM						
TOTAL								

*Included in the 10 credits under Open Elective category.

III SEMESTER

Department: Mathematics Programme: B.Tech., (EE)										
Semester: Third		Subject	t Categoi	y: BSC	Ser	nester E	Exam Type	e: TY		
Comme Co. 1a	Comment	Pe	eriod / W	eek	Credit	Ma	ximum M	larks		
Course Code	Course	L	Т	Р	С	CA	SE	TM		
MAA104	Transforms, Partial Differential Equations and Statistics	3	1	-	4	25	75	100		
Prerequisite	•	•	•	•	•					
Course Outcome	Course O	utcome S	tatement				Lev	vel		
CO1	Explain the concept of Laplace tra	unsform a	& can ap	ply to sol	ve D.E aı	nd	Under	stand		
CO2	Solve P.D.E and apply for solving	g non-line	ear and li	near first	order		App	ply		
CO3	Solve PDE by method of separation of separations	of variable	es for one	dimensior	nal wave		Арр	ply		
CO4	Solve the one and two dimensiona	al heat eo	uation 11	sing Four	ier series		Anı	olv		
C05	Extend the concept of probability	to find [)istributi	on and Ex	pectation	1	Under	stand		
UNIT_I	I anlace Transforms Periods									
Definition of Lan	ition of Lonloca Transform Inverse Lonloca Transform Linearity property Lonloca transform of									
unit step function	Unit impulse function and some	e elemer	, Lincari itary fun	ctions cl	hange of	scale a	nd first			
shifting property	Derivatives and integrals of I anlac	e transfo	rm trans	sform of	lange of lerivative	scale a	nteorals	CO1		
Application: Solu	tion of single ordinary linear differ	ential eq	uation w	vith const	ant Coeff	ficients_	I anlace	COI		
transform of Periodic functions										
UNIT II Destine Differential Equations Designed at the second sec										
Constal and Singular solution of DDE Complete Solution of Einst order Non linear DDE Lagrangela										
General and Singular solution of PDE, Complete Solution of First order Non-linear PDE, Lagrange's										
multipliers	Thist order, solution of the simul	lancous	quations	s by the l		n group	ing and	002		
	Higher Order DDF and Bounda	wy Volu	Drobla	me			Doriod	le. 17		
Homogeneous lin	ear PDE of higher order with cou	nstant co	officient	nis s. Solutio	on of nor	tial diff	Ferential	15.12		
equation by the m	ethod of separation of variables. A	nnlicatio	n of PD	5. Soluti F: Variah	le separa	ble solu	tions of	CO3		
the one-dimension	al wave equation. Transverse vibra	tion of a	stretcher	L. Vallau Letring	ic separa	DIC SOIU		005		
	One Dimensional and Two Dim	ansional	Hoot Fl	a su mg.			Doriod	le. 17		
Heat Equation	Variable and separable solution	of one	limancio	uw nal haat	aquation	n Tom	noroturo	15. 12		
distribution with	zero and non zero boundary value	$T_{\rm WO}$	dimensio	nal heat	flow up	l, ICIII	dy state	CO4		
conditions (Cartes	ian)	.s, 1w0-	unnensie	mai meat	now un	ici sica	uy state	0.04		
	Probability and Statistics						Paria	le. 12		
Drobability Event	a Sample space Axioms of probab	vility Do	ndom ve	richle (D	licorata a	nd Cont		15.12		
Evenetation Dro	hability Distribution. Dinomial	Doiggon	R Nor	mal diat	vibution	and st	inuous),	C05		
Expectation, Fio	bability Distribution. Billonnal,	roisson	Renk ag	malation	ITOULIOII	anu si	alistical	005		
Total Contact II	aure 45 Tutorial Hourse 15		Rank CO		00	Tot	al Hauwa	<u> </u>		
Defenence Deck										
Reference Book:		1 - 1	(1 1')	D' / I	· · · · · · · · · · · · · · · · · · ·	14				
 Veerarajan T, Transforms and Partial Differential Equations, Third Edition, McGraw-Hill Education (India)Private Limited, 2016. 										
3. Venkataraman M	.K., Engineering Mathematics, Third Y	ear, Part-	B, The N	ational Pul	blishing C	ompany,	Chennai, 2	2008.		
4. S.C.Gupta and V	K.Kapoor, Fundamentals of Mathemat	ical Statis	stics, 10th	Edition, S	Sultan Cha	nd &Sor	ıs,			
New Delhi, 2000										
5. Erwin Kreyszig,	Advanced Engineering Mathematics (9	th Ed), Jo	ohn Wiley	/ & Sons,]	New Delh	i, 2011.				
0. Kamana B.V., Hi 7 Bali N and Gave	gner Engineering Mathematics, Tata M	tics I ave	iii New D	tions Dut	enth Repri	nt, 2010	hEdition (2011		
7. Bali N. and Goyal M., Advanced Engineering Mathematics, Laxmi Publications Pvt. Ltd., New Delhi,9thEdition, 2011.										

7. Bali N. and Goyal M., Advanced Engineering Mathematics, Laxmi Publications Pvt. Ltd., New Delhi,9thEdition, 2011.

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-	1	-
AV	2	2	-	-	-	-	-	-	-	-	-	-	1	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)									
Semester: Third		Subject Category: PCC Semester Exam Type: TY							
Cauraa Cada	Course	Pe	riod / W	eek	Credit	Ma	ximum M	larks	
Course Code	Course	L	Т	Р	C	CA	SE	TM	
EEA103	ELECTRICAL CIRCUIT ANALYSIS	3	1	-	4	25	75	100	
Prerequisite	Basic Electrical Engineering, Lap	lace Trar	sform	1	1	1	1		
Course Outcome	Course O	utcome S	tatement	,			Lev	/el	
CO1	Apply electrical circuits with DC	excitation	n using r	network tl	neorems.		Арр	oly	
CO2	Apply electrical circuits with AC	excitation	n using r	network tl	neorems.		Арр	oly	
CO3	Analysis of coupled circuits and u RLC circuits	nderstan	ding of r	esonant F	RL,RC an	d	Anal	lyse	
CO4	Explain the behavior of magnetica	ally coup	led circu	its			Under	stand	
	Analyse the behaviour of three ph	ase circu	its for di	fferent lo	ads under	r	<u>e naer</u>	Julia	
<u>CO5</u>	balanced and unbalanced conditions, Analys								
UNIT-I	Sources And Theorems for DC	Circuits					Period	ls: 12	
Series parallel ci	rcuits. Theorems for DC circuits	- Maxin	num pov	wer trans	fer theor	rem, Mi	illman's		
theorem, Substitu	tion theorem. Dependent current as	nd voltag	ge source	es. Super	Mesh A	nalysis -	– Super	CO1	
Node Analysis.									
UNIT-II AC Circuit Analysis Periods: I									
Basic elements and phasor diagram. AC source conversion. Review of Mesh and node methods of analysis for AC circuits. Theorems for AC circuits. Superposition theorem. Theorem CO									
Norton's theorem	Maximum power transfer theorem	Millma	n's theor	em Subs	titution th	nni S II	licorenii,	02	
INORTON'S theorem, Maximum power transfer theorem, Millman's theorem, Substitution theorem.									
Natural and Force	d response – Steady state and Trat	nsient st	ite resno	nse Sten	and sinu	soidal r	esponse	15. 12	
for RL, RC & RL	C circuits. Solution using Laplace T	ransform	ne respo is.	nse, step	und sind	Soldul I	esponse	CO3	
UNIT-IV	Coupled And Resonance Circuit	ts					Period	ls: 12	
Coupled circuits:	Self and Mutual inductance - co	efficient	of coup	oling-dot	conventi	on– Eq	uivalent		
Inductance in serie	es and parallel coupled circuits sin	ngle tune	ed and do	ouble tune	ed circuits	5.		CO4	
Resonant circuits-	- Series and parallel resonance cir	rcuits, re	sonant f	requency	– Bandy	width -	Quality	04	
Factor Q - effect of	f Q on resonance. Relations betwee	en Q, rese	onant fre	quency a	nd bandw	vidth			
UNIT-V	Three Phase Circuits and Netwo	ork Topo	ology				Period	ls: 12	
Three phase balan	ced / unbalanced voltage sources -	- analysis	s of three	e phase 3	-wire and	4-wire	circuits		
with star and delta	connected loads, balanced & un ba	lanced –	phasor of	diagram c	of voltage	s and cu	rrents		
Two Port Networl	and Network Functions: Two Por	t Networ	ks, term	inal pairs	, relations	ship of t	wo port	COT	
variables, impeda	nce parameters, admittance param	eters, an	d hybrid	d parame	ters, inte	rconnect	tions of	C05	
Crowb Theory T	Arrag of granhs subgraph Trees (Co troo	Incidence	a materia	out set	motiv	Tionat		
matrix	ypes of graphs- subgraph, free, o	co-tree,	incluenc	e matrix	, cui sei	maurix,	Tie-set		
Total Contact H	ours: 45 Tutorial Hours: 15	1	Practica	Hourse	00	Tot	al Hours	60	
Reference Book			Tactica	i iioui ș.	00	100	ai iivui s.	00	
1 W H Havt I K Kemmerly and Steven M Durbin "Engineering Circuit Analysis" 7th Edition Tata McGraw									
Hill, 2007.									
2. Joseph A Edmin	nister, "Electric circuits Theory", 6t	h Edition	ı, Schau	m's outlir	ne series,	Tata Mo	Graw Hil	1, 2014.	
3. Sudhakar A and	l Shymohan SP, "Electric Circuit A	nalysis",	Tata Mo	Graw Hi	11, 2008				
4. Allan H. Robbin	ns and Miller," Circuit Analysis The	eory and	Practice	", Delme	r Publishe	ers, 5th e	edition, 20	012	
5. Charles K. Alex	ander and Mathew N O Sadiku, "F	undamer	tals of E	electric Ci	ircuits" 21	nd editio	on, Tata M	1 cGraw	
Hill 2013.									
6. Mark Summerf	ield, "Programming in Python 3", 2	nd editio	n. Pearso	on Publis	hers 2010				

COs		Program Outcomes (POs)											Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO2	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO3	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO4	3	2	1	-	-	-	-	-	-	-	-	1	2	-
CO5	3	3	1	1	-	-	-	-	-	-	-	1	2	-
AV	3	2.8	1	0.8	-	-	-	-	-	-	-	1	2	-

Department: Elect	rical and Electronics Engineering	Program	nme: B. '	Fech., (E	E)				
Semester: Third		Subject	t Categoi	y: PCC	Sei	mester E	Exam Type: TY		
Course Code	Course	Pe	riod / W	eek	Credit	Ma	ıximum M	larks	
Course Code	Course	L	Т	Р	C	CA	SE	TM	
EEA104	ELECTROMAGNETIC FIELDS	3	-	-	3	25	75	100	
Prerequisite	Vector Calculus and Material Scie	ence							
Course Outcome	Course O	utcome S	tatement				Lev	vel	
CO1	Apply the basic mathematical co fields in field calculations.	oncepts r	elated to	electrom	nagnetic	vector	Арр	oly	
CO2	Apply the basic concepts about electric field intensity, electrical p	electrosta otential a	atic field and energ	ls for the gy density	calculat	ion of	Арј	ply	
CO3	Describe the nature of electric f and multiple dielectrics and ap calculations.	ield in fi pply the	ree space basic c	e, conduc oncepts	ctors, die in capac	lectric vitance	Under	stand	
CO4	Describe the basic concepts of magnetic field intensity, force, tor	magneti que and	c fields inductan	for the ce.	calculati	on of	Anal	lyse	
CO5	Explain different methods of en concept of electromagnetic waves	nf generation and character	ation, M racterizir	axwell's	equation eters.	is and	Under	stand	
UNIT-I	Vector Analysis						Periods:	09	
Scalar - Vector- elements- Del ope Theorem.	Vector addition- Subtraction and erator- Gradient- Divergence and C	Multiplic Curl of a	vector-	Coordina Divergen	te Syster ce Theor	ms, Dif	ferential Stoke's	CO1	
UNIT-II	Electrostatic Field						Perioc	is: 09	
Coulomb's law - point, line, surfac Gauss 'Law– Pote moment–Energy c	charge density- Electric flux densit e and volume charge distributions ential Field-Potential gradient –Rela lensity.	y and Ele – Electr tion betv	ectric fie ic Potent veen E ar	ld intensi tial - Gau nd V -Fie	ty– elect 1ss law – ld due to	ric field Applica dipoles	s due to tions of – dipole	CO2	
UNIT-III	Electric Fields in Material Spac	e					Period	ls: 09	
Current - Current - Dielectric cons conductors– Polar	Density - Continuity of current - Co tant and Dielectric Strength – B ization in dielectrics – Energy store	onductivi oundary ed in a ca	ty and re condition pacitor—	esistivity o ons – Ca Poisson's	of materi pacitance s and Lap	als. Perr e of sy place equ	nittivity stem of uations	CO3	
UNIT-IV	Magnetic Field						Period	ls: 09	
Biot-Savart Law–Ampere's Circuital Law– Magnetic flux and -Magnetic field density – The Scalar and Vector magnetic potentials– Force on a moving charge and current elements– Force and Torque on closed circuit – Magnetization and Permeability–Magnetic boundary conditions – Magnetic circuit – Potential energy and forces on Magnetic materials – Inductance and mutual inductance – Inductance of solenoids, toroids, and transmission lines.									
UNIT-V	Electromagnetic Field						Period	ls: 09	
Faraday's Law, -7 equation in point a vector and Poyntin Tatal Contact H	Time varying magnetic field – Cond and integral forms - Electromagneti ng Theorem.	luction clic Wave	urrent – 1 in free sp	Displacen	nent curr in Dielec	ent - Ma trics – F	axwell's Poynting	CO5	
I OTAL CONTACT HO	Jurs: 45 Lutorial Hours:00	rra	cucal H	ours: 00		Utal H(Jurs: 45		

Reference Book:

1. William Hayt Jr. and John A. Buck, "Engineering Electromagnetics", TMH publishing co. Ltd., 7th Edition, 2006.

2. John D. Kraus, Electromagnetics, McGraw Hill, 5th Edition, 1999

3. Mathew N.O. Sadiku, "Principles of Electromagnetic Fields", 4th Edition, Oxford University Press, 2010.

4. Joseph A. Edminister, "Theory and problems of Electromagnetics", Schaum's series McGraw Hill International Edition, 2nd Edition, 1993, Singapore.

5. S.P. Seth," Fundamentals of Electromagnetics", Wiley Eastern Ltd., 1st Edition, 2002.

6. Narayana Rao, Elements of Engineering Electromagnetics, Prentice Hall of India, 6th Edition, 2008.

COs	Program Outcomes (POs)												Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	1	2	-
CO2	3	3	1	2	-	-	-	-	-	-	-	1	2	-
CO3	3	3	1	-	-	-	-	-	-	-	-	1	2	-
CO4	3	2	1	2	-	-	-	-	-	-	-	1	2	-
CO5	3	3	1	-	-	-	-	-	-	-	-	1	2	-
AV	3	2.8	1	0.8	-	-	-	-	-	-	-	1	2	-

Department: Elect	rical and Electronics Engineerin	g Progra	Programme: B.Tech., (EE)						
Semester: Third		Subjec	t Categor	y: PCC	Sei	mester E	Exam Type: TY		
Caura Cada	Comme	P	eriod / W	eek	Credit	Ma	aximum M	[arks	
Course Code	Course	L	Т	Р	C	CA	SE	TM	
EEA105	ELECTRONIC DEVICES AND CIRCUITS	3	-	-	3	25	75	100	
Prerequisite	-								
Course Outcome	Cours	e Outcome S	Statement				Lev	/el	
CO1	Explain the construction, bias PN Junction diode.	sing, equiva	lent circu	it and ch	aracteris	tics of	Under	stand	
CO2	Explain the construction, cha different biasing circuits for B	racteristics JT.	and opera	ation of H	BJT. Des	ign of	Under	stand	
CO3	Explain the construction and different biasing circuits for J	l operation FET.	JFET an	d MOSF	ET. Des	ign of	Under	stand	
CO4	Explain the construction, cha devices. Design of clipper, circuits with and without filter	racteristics clamper, ha	and opera	ation of d and full	lifferent wave re	power ectifier	App	oly	
CO5	Outline the properties and c opto-electronic devices	haracteristic	s of few	specializ	zed diode	es and	Under	stand	
UNIT-I Sei	miconductor Diodes						Period	ls: 09	
PN junction diode junction diode–Sil dynamic resistan capacitances–Diod Clamping circuits	e - Construction – forward and icon versus Germanium diodes ices–Diode equivalent mode le switching characteristics -rev	reverse bia – Effects of ls– Specif verse recove	s operation temperation teation try time-l	on – math ure on dio sheets–Tr Diode app	nematical ode opera ansition plications	model ation– S and s – Clip	of a PN tatic and diffusion ping and	CO1	
UNIT-II Bir	oolar Junction Transistors						Period	ls: 09	
Construction and characteristics an stabilization of o compensation tech	operation– NPN and PNP tra d regions of operation–Spec perating point– different bias niques–thermal stability and the	nsistors– C ification sl ing circuits ermal runaw	CB, CE a neet–Bias and DC ay	nd CC c ing of I C load li	onfigura BJTs– o ne chara	tions– t perating acteristic	ransistor g point– cs –Bias	CO2	
UNIT-III Fie	eld Effect Transistors						Period	ls: 09	
Construction and comparison betweenhancement types	operation of JFET – drain een JFET and BJT – MOS s – Biasing of FETs – biasing c	and transfe FET – Cor rcuits	er charac struction	teristics and op	– Shock eration	ley's e - deplet	quation– tion and	CO3	
UNIT-IV Power Devices and Rectifiers& Power Supplies Periods: 09								ls: 09	
Introduction to power devices– SCR, SCS, GTO, Shockley diode-DIAC- TRIAC and UJT. Half-wave and full-wave rectifiers–ripple reduction using filter circuits– Shunt and series voltage regulators - Regulated power supplies.								CO4	
UNIT-V Sp	ecial Two-Terminal Devices						Period	ls: 09	
Principle of operation of Schottky diode, Varactor diode, Zener diode, Tunnel diode and PIN Diodes. OPTO ELECTRONIC DEVICES: Principle of operation and characteristics of Photo diodes, CO Phototransistors, Photo conductive cells, LEDs and LCDs, Opto-couplers, Solar cells and thermistors							CO5		
Total Contact H	iours: 45 📋 🛛 Tutorial Hour	's: UU	Practic	al Hours:	: 00	To	tal Hours	:45	

Reference Book:

1. Jacob Millman and Christopher C Halkias, Electronic Devices and Circuits, Tata-McGraw Hill, 2003.

2. Robert L. Boylestad and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice-Hall India, 2009.

3. David A Bell, Electronic Devices and Circuits, PHI, 4thEdition, 2006.

4. J. D. Ryder, Electronic Fundamentals and Applications, Pearson Education, Canada, 1976.

5. Allen Mottershed, Electronic Devices and Circuits: An Introduction, PHI Learning, 2011

COs					Prog	ram Out	tcomes ((POs)					Program Specific Outcome (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	-	-	-	-	-	-	-	-	1	1	-
CO2	2	3	1	-	-	-	-	-	-	-	-	1	1	-
CO3	2	3	1	-	-	-	-	-	-	-	-	1	1	-
CO4	2	3	1	-	-	-	-	-	-	-	-	1	1	-
CO5	2	3	1	-	-	-	-	-	-	-	-	1	1	-
AV	2	3	1	-	-	-	-	-	-	-	-	1	1	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)										
Semester: Third		Subjec	t Catego	ory: PCC	Ser	nester I	Exam Type	e: TY		
Course Code	Columba	Pe	eriod / W	'eek	Credit	Ma	aximum M	arks		
Course Coue	Course	L	Т	Р	C	CA	SE	TM		
EEA106	ELECTRICAL MACHINES -I	3	-	-	3	25	75	100		
Prerequisite	-									
Course Outcome	Course Ou	tcome S	tatement				Lev	el		
CO1	Apply the basic concepts of n electromechanical energy conversion	nagnetic on in rot	circuit	s in tran achines.	nsformer	s and	App	oly		
CO2	Explain the construction and worki	ng princ	piple of I	DC machi	nes.		Unders	stand		
CO3	Analyse various operational charac	teristics	of DC n	nachines.			Anal	yse		
CO4	Assess various performance paras suitable tests.	meters	of the n	nachine,	by cond	ucting	Evalı	ıate		
CO5	Analyse the equivalent circuit efficiency and regulation.	of tran	sformer	and pre	edetermin	e the	Anal	yse		
CO6	Explain the working principle of a with different types of connections	uto tran	sformer,	three pha	ase transf	ormer	Unders	stand		
UNIT-I M		Periods:	09							
Simple magnetic	circuit calculations– B-H Relations	hip – M	lagnetica	ally induc	ced emf	and for	ce - AC			
operation of mag	netic circuits – Hysteresis and Eddy o	current l	osses - E	Energy in	magnetic	c systen	n – Field	CO1		
energy and mecha	anical force – Multiply Excited Magn	etic fiel	d system	s.	C	·				
UNIT-II D	C Generator						Periods:	09		
Construction and	principle of operation of DC Machin	ne – Lap	and way	ve windir	ng – Exci	tation a	ind types			
of generators –	Circuit Model - Armature reactio	on – Co	ompensat	ting Win	iding –	Commu	itation –	CO2		
Characteristics –	Efficiency – Applications.									
UNIT-III D	C Motor						Periods:	09		
EMF and Torque direct, indirect an	e – Circuit Model – Characteristics – d regenerative Tests – Braking - DC 1	 Startin machine 	lg – Spe s dynam	ed contro iics – App	ol – Effic olications	iency –	- Testing	CO3		
UNIT-IV T	ransformers						Periods:	09		
Review of Transf	ormer operation, equivalent circuit –	Constru	ction – P	Phasor dia	ıgram – T	esting -	– Parallel			
operation and loa	ad sharing of single-phase transform	ers – P	er Unit s	system –	Losses -	- Effici	ency and	CO4		
Voltage Regulation	on - All day efficiency – Excitation pl	henomei	10n in Tr	ransforme	ers – App	lication	s.			
UNIT-V Po	olyphase Transformers and Special	Transf	ormers				Periods:	09		
Auto-transformer	- Construction and saving in copper	- Three	e phase t	ransform	ers – Pha	ise Con	version –			
Tap changing $-$	ariable frequency transformer – Vol	tage and	d Curren	t Transfo	rmers – A	Audio f	requency	CO5		
transformer.			D /1	1.77	0.0	-		1.		
Total Contact I	Hours: 45 Tutorial Hours:00		Practica	al Hours:	: 00	То	tal Hours	:45		
Keterence Book		D 11' 1'	0.1	IN P	11 . 4.1 .	1	017			
1. I.J. Nagrath and 2 B I Theraia El	D.P. Kothari, Electric machines, T.M.H.	Publishi Machina	ng Co.Lto s S Char	1., New De nd 2008	eini, 4th E	aition, 2	017.			
3. Battacharva S K	Electrical Machines. Technical Teacher	s Trainin	g Institute	e. 2nd Edi	tion, 2003					
4. P.C. Sen, Princip	ples of Electric Machines and Power Elec	tronics,	Wiley Stu	ident Editi	on, 2nd E	dition, 2	008.			

5. M.N. Bandyopadhyay, Electrical Machines - Theory and Practice, PHI, 2007.
6. J.B. Gupta, Theory and Performance of Electrical Machines, J.K. Kataria& Sons, 13th Edition, 2004.

COs					Prog	ram Out	tcomes ((POs)					Prog Spe Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO3	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO4	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO5	3	2	1	-	-	-	-	-	-	-	-	1	1	-
CO6	3	2	1	-	-	-	-	-	-	-	-	1	1	-
AV	3	2.67	1	-	-	-	-	-	-	-	-	1	1	-

Department: Elect	rical and Electronics Engineering	ring Programme: B.Tech., (EE)						
Semester: Third		Subjec	t Catego	ry: PCC	Sei	nester I	Exam Type	e: TY
Caura Cada	Correct	Pe	eriod / W	'eek	Credit	Ma	aximum M	[arks
Course Code	Course	L	Т	Р	C	CA	SE	TM
EEA107	SIGNALS AND SYSTEMS	3	-	-	3	25	75	100
Prerequisite	Differential and integral calculu	s, Partial d	ifferenti	ation and	Transfor	ms.		
Course Outcome	Course	Outcome S	tatement	ţ			Lev	'el
C01	Classify different types of sign periodic and aperiodic etc. an properties.	als-continu d able to	ous and classify	discrete, systems	odd and based or	even, their	Under	stand
CO2	Analyze continuous-time signal Fourier transform (for aperiodic	s using Fo signals) a	urier seri nd Lapla	les (for pe ce transfo	riodic sig rm.	gnals),	Anal	yse
CO3	Apply the concepts of convolu time systems using differential of	tion integrequation ar	al and n nd interp	nodelling retation of	of contir f the solu	nuous- tion.	App	oly
CO4	Analyze discrete-time signals and discrete-time Fourier transf for discrete-time signals.	using Four orm (for a	rier serie periodic	es (for pe signals) a	eriodic si nd Z tran	gnals) sform	Anal	yse
CO5	Analyse and realize LTI system	using Z-T	ransform	ıs			Anal	yse
UNIT-I Int	roduction to Signals and System	1s – Classi	fication				Periods:	09
Introduction: Signals and systems as seen in everyday life, and in various branches of engineering and science electrical, mechanical, hydraulic, thermal, biomedical signals and systems as examples. Classification of Signals: Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids – Basic operation of signals. Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic and Aperiodic signals, Deterministic and Random (stochastic) signals, Energy and Power signals. Classification of Systems - CT systems and DT systems – Linear and Nonlinear systems, Time-variant and Time-invariant systems, Causal and Non-causal systems, Stable and Unstable systems.								C01
UNIT-II An	alysis of Continuous-Time Sign	als					Periods:	09
Fourier series repr continuous-time n convolution prope scaling properties. – properties – Inve	resentation of continuous-time per on-periodic signals – Properties erty, differentiation and integratio Inverse Fourier transform – Dua erse Laplace transform.	riodic sign of Fourie n propertion lity propen	nals – Fo r represe es, time ty of Fo	ourier tran entations - and frequ urier trans	nsform re – linearit ency shit sform. La	epresent y, symr ft prope aplace tr	ation for netricity, rties and ransform	CO2
UNIT-III Lin	near Continuous-Time Systems						Periods:	09
Continuous - time linear time-invariant (LTI) systems – Convolution integral – evaluation of convolution integral – system realization through block diagram - interconnection of LTI systems. Differential equation representation of LTI systems. Solution to differential equation – natural and forced response. State - variable representation of LTI systems								CO3
UNIT-IV An	alysis of Discrete-Time Signals						Periods:	09
Fourier series rep Discrete-time non discrete-time syste	presentation of Discrete-time sig- periodic signals – properties of ems and its properties – Inverse z-	gnals – D discrete-ti transform	iscrete-t me Four	ime Four rier repres	ier trans sentations	form (I s. z-tran	OFT) for isform of	CO4
UNIT-V Lin	near Discrete-Time Systems						Periods:	09
Discrete-time LTI representation of response. State van	representation of discrete-time LTI system – solution to differential equation – natural and forced CO 5 response. State variable representation of discrete-time systems Total Contact Hours: 45 Tutorial Hours:00 Practical Hours: 00 Total Hours:45							

Reference Book:

1. Simon Haykin, Barry van Veen, "Signals and Systems", John Wiley and Sons (Asia) Private Limited, Second Edition – Reprint 2014.

2. Allan V. Oppenheim, Allan S. Willsky and S. Hamid Nawab, "Signals and Systems", Prentice-Hall India Learning, Second Edition, New Delhi, 2007.

3. I. J. Nagrath, S. N. Sharan, R. Ranjan, S. Kumar, "Signals and Systems", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2001.

4. B.P. Lathi, "Signal Processing and Linear Systems", Oxford University Press, 1998.

5. Ramesh Babu, "Signalsand Systems", Scitech Publications, Chennai, 4th edition, 2011.

6. Gene F. Franklin, J. David Powell and Abbas Emami-Naeini, "Feedback Control of Dynamic Systems", 8th Edition,

Pearson, 2018

COs					Prog	ram Ou	tcomes	(POs)					Prog Spe Outc (PS	gram cific omes Os)
	PO1	PO2	PO12	PSO1	PSO2									
CO1	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO2	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO3	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO4	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO5	3	3	1	1	-	-	-	-	-	-	-	1	2	-
AV	3	3	1	1	-	-	-	-	-	-	-	1	2	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)									
Semester: Third		Subjec	t Categoi	ry: PCC	Se	mester E	Exam Typ	e: LB	
Course Code	Course	Pe	eriod / W	eek	Credit	Ma	iximum M	Iarks	
	Course	L	Т	Р	C	CA	SE	TM	
EEA108	Electronics Laboratory-I	-	-	3	1.5	25	75	100	
Prerequisite	-					<u> </u>			
Course Outcome	Course O	utcome S	tatement				Lev	vel	
CO1	Demonstrate the working of PN devise simple clipper and clamp wave shaping.	junction er circui	ts to un	nd Zener derstand	the conc	and to ept of	Under	stand	
CO2	Demonstrate the working of Bipo and Common-Emitter configuration voltage-divider bias for underst amplifier circuits.	lar Junct ion, and anding	ion Trans able to o the biasi	sistors in construct ing of tr	Common fixed bis cansistor	n-Base as and based	Under	stand	
CO3Determine the V-I characteristics of voltage (field) controlled devices like JFET and MOSFET, and the concept of negative resistance characteristics of UJTs.Understar									
CO4	Apply the firing characteristics of power devices like SCR and TRIAC for different values of gate currents and design simple rectifier circuits using PN junction diodes and compute their ripple factors with capacitance filter connected and detached.								
CO5	Outline the working of phot measurement devices like CRO and	o devic nd DSO.	es, the	working	princip	ole of	Under	stand	
Any 10 Experime	ents								
1. V-I Characteris	tics of PN junction diode and voltage	ge regula	tion char	acteristic	s of Zene	er diode.		CO1	
2. Clipper and Cla	mper circuits using diodes.							COI	
3. V-I Characteris	tics of Bipolar Junction Transistor (BJT) in	Commor	n-Base co	nfigurati	on.			
4. V-I Characteris	tics of BJT in Common-Emitter con	nfiguratio	on.					CO2	
5. Biasing circuits	for Transistor amplifiers (Fixed bia	asing and	l Voltage	e-divider l	olasing)				
6. Drain and Trans	sconductance characteristics of June	ction Fie	Id Effect	Transisto	or (JFET)				
7. Drain and Trans	sconductance characteristics of Met	tal Oxide	Semicor	iductor Ju	inction F	ield Effe	ect	CO 2	
I ransistor (MOSF	<u>'El).</u>	T	1 1	· · ·	6:4	• • • •		003	
8. Negative resista	ance characteristics of Uni-Junction	Transist	or and de	eterminati	ion of int	rinsic su	and-		
9 Triggering char	acteristics of Silicon Controlled Re	octifier (S	(CP)						
9. Higgering char 10. V I Characteri	istics of TRIAC for two quadrant or	peration	CKJ.						
11 Determination	of ripple factor for half-wave and t	full-wave	e rectifier	s (centre-	tanned a	nd brido	re	CO4	
configuration) wi	th and without filter.	an wave			upped d		,-		
12. Characteristics	s of Photo-diodes and Photo-transis	tors.							
13. Study of Cathe	ode Ray Oscilloscope (CRO)							CO5	
Total Contact H	ours: 00 Tutorial Hours:00]	Practical	Hours:	45	Tot	al Hours	:45	

COs					Prog	ram Out	comes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	-	-	-	-	-	-	1	3	1
CO2	3	3	2	3	3	-	-	-	-	-	-	1	3	1
CO3	3	3	2	3	3	-	-	-	-	-	-	1	3	1
CO4	3	3	3	3	3	-	-	1	-	-	-	1	3	2
CO5	3	3	1	3	3	-	-	-	-	-	-	1	3	1
AV	3	3	2	3	3	-	-	0.2	-	-	-	1	3	1.2

Department: Elect	rical and Electronics Engineering	Program	nme: B.	Fech., (E	E)			
Semester: Third		Subject	Categor	y: PCC	Ser	nester Ex	xam Typ	e: LB
Course Code	Course	Pe	riod / W	eek	Credit	Max	kimum M	larks
Course Code	Course	L	Т	Р	С	CA	SE	TM
EE A 100	Electrical Machines			2	15	25	75	100
EEAI09	Laboratory-I	-	-	5	1.5	23	75	100
Prerequisite	-							
Course Outcome	Course Ou	utcome S	tatement				Lev	/el
CO1	Analyse the operation and the o	character	istics of	different	t types o	f DC	Anal	vse
	machine under loaded and unloaded	ed condit	ions.				7 mai	iyse
CO2	Analyse the operation and the o	character	istics of	different	t types o	f DC	Anal	vse
generators under loaded conditions.								
CO3 Apply various speed control measures of DC shunt motors. Apply								
CO4	Predetermine the performance parameters of transformers. Analy							
C05	Perform parallel operation of s	single-ph	ase tran	sformers	and 3	phase	Anı	hlv
	transformer connections.							, , , , , , , , , , , , , , , , , , ,
Any 10 Experime	ents							
1. Performance de	termination of DC Motors by load t	est						
2. Performance de	termination of DC shunt machine b	y Swinbı	urne's (n	on-loadin	ig) test			CO1
3. Performance de	termination of DC machine by Hop	kinson's	(regener	ative) tes	t			
4. Open circuit ch	aracteristics of self-excited DC shur	nt Genera	ator					CO^{2}
5. Performance de	termination of DC Generators by lo	ad test						02
6. Study of speed	control of DC Motors							CO3
7. Study of Retard	ation test							COS
8. Performance de	termination of single phase and three	e phase	transform	ners by lo	ad test			
9. Performance de	termination of single-phase transfor	mer by r	non-loadi	ing (OC a	and SC) to	est		CO4
10. Performance d	letermination of single-phase transfe	ormer by	Back-to	-Back (Su	umpner's) test		
11. Determination	of Load sharing of single-phase tra	nsforme	rs by Par	allel oper	ation			CO5
12. Study of three	phase transformer connections							005
Total Contact He	ours: 00 Tutorial Hours:00	I	Practical	Hours: 4	45	Tota	l Hours:	45

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO												PSO2
CO1	3	3	2	3	3	-	-	-	-	-	-	1	3	2
CO2	3	3	2	3	3	-	-	-	-	-	-	1	3	2
CO3	3	3	2	3	3	-	-	-	-	-	-	1	3	2
CO4	3	3	3	3	3	-	-	1	-	-	-	1	3	2
CO5	3	3 3 3 3 3 - - 1 - - 1											3	2
AV	3	3	2.4	3	3	_	_	0.4	-	-	-	1	3	2

Department: Hu	umanities and So	ocial Science	Programme: B.Tech. , (EE)									
Semester: Thir	d		Subject	t Catego	ry: MCC	Sei	mester l	Exam Typ	e: -			
Caura Cada		Course	Pe	riod / W	/eek	Credit	M	aximum N	[arks			
Course Code		Course	L	Т	Р	C	CA	SE	TM			
SHA102	INDIAN CO	NSTITUTION	3	-	-	-	-	-	-			
Prerequisite	-		•	•	•	•	•	•				
Course Outcom	e	Course Or	utcome S	tatement	t			Lev	/el			
CO1	Outline the e	ssence and significan	ce of the	constitu	ition			Under	stand			
CO2	Recognize or	ne's fundamental duti	es and ri	ghts				Under	stand			
CO3	Appreciate t judiciary	the structure and f	unctions	of leg	islature,	executive	e and	Under	stand			
CO4	Explain the f	unctioning of state go	overnmei	nts and u	inion terri	itories		Under	stand			
CO5	Describe the	centre-state relations	and fund	ctioning	of constit	tutional b	odies	Under	stand			
UNIT-I I	Introduction of I	Indian Constitution						Periods:	09			
The Making of	Indian Constitutio	on - The Constituent	Assembl	y - Sour	ces of Ind	lian Cons	titution	-	CO1			
Preamble and th	e Supreme Court	's Judgments on Prea	amble.	-					COI			
UNIT-II S	State, Rights and	l Duties						Periods:	09			
State and Unior	n Territories – Ci	tizenship - Fundame	ntal Rig	hts - Dir	rective Pr	inciples o	of State	Policy -	COL			
Fundamental Du	uties.	_	_			_		-	02			
UNIT-III U	Union Governme	ent						Periods:	09			
Union Governm	nent - The Power	s and Functions of th	he Presid	lent, Vic	e-Preside	ent, Coun	cil of N	/linisters,				
Prime Minister	, Judiciary, Sup	reme Court - Judic	ial Rev	iew - J	udicial A	Activism-	Public	Interest	CO3			
Litigation - Pow	ver and Functions	of the Parliament - H	Budget P	ower and	d Functio	ns of Parl	iament,	Speaker	COS			
of Lok Sabha.												
UNIT-IV S	State Governme	nts						Periods:	09			
State Governme	ents – Governor -	State Council of Mir	nisters - (Chief Mi	inister- Le	egislative	Assem	bly- High				
Courts - Union	Territories - Par	nchayati Raj Institut	ions - 7	3th and	74th Co	nstitution	al Ame	ndment -	CO4			
Gram Panchaya	ts - Block Pancha	ayats - Municipalities						1				
UNIT-V U	Union- State Rel	ations, Constitution	al Bodie	S				Periods:	09			
Centre – State F	Relations - Public	Service - Election C	Commiss	ion - Nľ	TI Ayog,	Emergen	cy Pow	ers of the	~~~			
President- Cons	stitution Amendn	nent Procedure- Righ	nt to Inf	ormation	n Act - R	light to E	ducatio	on. Major	CO5			
Constitutional A	mendments and	their impact on Indian	n Politica	al Syster	n.							
Total Contact	t Hours: 45	Tutorial Hours:00)	Practic	al Hours	: 00	To	tal Hours	:45			
Reference Boo	k:											
1. Austin, Granvil	le. The Indian Cons	stitution: Cornerstone of	of a Natio	n. Oxforc	d Universit	y Press, 19	999.					
2. Basu, Durga D	Das, et al. Introdu	ction to the Constitut	ion of Ind	dia. 20th	ed., Thor	oughly Re	ev, Lexis	NexisButte	erworths			
Wadhwa Nagpur	Wadhwa Nagpur, 2008.											
3. Choudhry, Suji	t, et al., editors. Th	e Oxford Handbook of	the India	n Constit	ution. Oxf	ord Univer	rsity Pre	ss,2016.				
4. Bakshi, Parvinr	alMulwantral, and	Subhash C. Kashyap, T	he Consti	tution of	India (Uni	iversal Law	/ Publish	iing, 2016)				
5. Bhargava, Raje	ev, Politics and Et	nics of the Indian Cons	titution,	2009								
7 Chakrabarty P	idvut India's Cons	titutional Identity: Ideo	cracy, 20 Mogical Br	10 Niofe and	Proforance	sos (Poutla	dao 201	10)				
8 Javal Niraia G	nayur, mula S CONS	nanu Mahta The Ovfor	nugical Be	nion to P		dia Ovfor	d Unive	rsity Droce	2010			
9 Kashvan Subh	ash (- Nur Constit	ution: An Introduction	to India's	Constitu	tion and C	onstitutio	nallaw	(NRTIndia	1994)			
10 Kashvan Suh	hash C. Our Constitu	ment: An Introduction +	o the Dar	liament c	of India Pe	vised adit	ion Nat	ional	1994)			
Book Trust India	2011		o the rai			LVISCU CUIL	ion, ivat					
11 Subhash C Ka	1. Subhash C. Kashvap Our Constitution Paperback –. (NBT India, 2012).											
12. Laxmikanth	M. & guot INDIANP	OLITY": McGraw-	-Hill Educ	ation & a	uot:Consti	tution of h	ndia&ou	ot:				
Ministry of Law a	nd Justice. Govt. o	f India.						- •,•				
,	-, • •											

COs	Program Outcomes (POs) P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012		Prog Spe Outc (PS	gram cific omes Os)										
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PSO1	PSO2
CO1	-	-	-	-	-	1	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	1	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	1	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	1	-	-	-	-	-	-	-	-
CO5	-											-	-	-
AV	-	-	-	-	-	1	-	-	-	-	-	-	-	-

IV SEMESTER

Department: Chemistry Programme: B.Tech., (EE)														
Semester: Fourth	•	Subject	t Categoi	ry: BSC	Sei	mester F	Exam Typ	e: TY						
G G 1	C	Pe	eriod / W	eek	Credit	Ma	ximum N	Iarks						
Course Code	Course	L	Т	Р	С	CA	SE	TM						
SHA101	Biology for Engineers	3	-	-	2	25	75	100						
Prerequisite	-	•	•	•	•	•	•	•						
Course Outcome	Course O	utcome S	tatement				Lev	vel						
CO1	Classify the basic biological pr living systems at molecular level.	inciples	and org	anization	al structi	ure of	Under	rstand						
CO2	Explain the concepts of recessiver	ness and	dominan	ce during	the pass	age of	Under	stand						
CO3	Convey that all forms of life has manifestations are as diverse as of	ve the sa	ame build nagine	ding bloc	ks and y	vet the	Under	stand						
CO4	Outline understanding of enzyme	action ar	nd factors	s affecting	o their ac	tivity.	Under	stand						
C05	Identify and classify microorganis	sms.	14 1401011	<u>an en en</u>	5 then ae	ci vitej i	Under	stand						
INIT_I	Classification	511151					Perio	de 9						
Classification outline based on (a) cellularity- Unicellular or multicellular (b) ultrastructure prokaryotes														
or eukarvotes (c)	Energy and Carbon utilisation -A	Autotroph	s. hetero	trophs. 1	ithotrope	s (d) A^{\dagger}	mmonia							
excretion – amino	telic, uricotelic, ureotelic (e) Habi	itats- aco	uatic or t	errestrial	(e) Mole	cular ta	xonomy	CO1						
three major kingd	oms of life.				(-)		j							
UNIT-II	Genetics						Perio	ds: 9						
Mendel's laws, Co	oncept of segregation & independer	nt assortn	nent. Cor	ncept of a	llele. Red	cessiven	ess, and	~~~						
dominance. Single	e gene disorders in humans – Sickle	e cell dise	ease, Phe	nylketonı	ıria.		,	CO2						
UNIT-III	Biomolecules		,	2			Perio	ds: 9						
Carbohydrates: T	ypes, Structural & functional impo	rtance. L		lassificati	on - Sim	ple, cor	npound,							
& derived, Import	tance of lipid soluble vitamins. Am	ino acids	– genera	al structur	re, essent	ial amin	o acids.							
Proteins - Levels	s of protein structure, structural	& funct	ional in	portance	of prot	eins, Ei	nzymes-	CO3						
Definition, Enzyn	ne Activity & Units, Specific Activ	vity, Spe	cificity, l	Factors at	ffecting e	nzyme	activity.							
Nucleic acids: Ty	pes and importance.		-		-	-	-							
UNIT-IV	Metabolism						Perio	ds: 9						
Introduction: Foc	od chain & energy flow. Definiti	ions - A	nabolism	n & Cata	ıbolism.	Photosy	nthesis:	CO4						
Reaction and imp	ortance. Glycolysis & TCA cycle. A	ATP – the	e energy	currency	of cells			004						
UNIT-V	Microbiology						Perio	ds: 9						
Concept of single	e celled organisms. Concept of sp	becies &	strains.	Identifica	ation & a	classific	ation of	COS						
microorganisms.	Virus – Definition, types, examples.	•						COS						
Total Contact H	ours: 45 Tutorial Hours: -]	Practical	Hours:	00	Tota	al Hours:	45						
Reference Book:														
1. Biology: A glol	bal approach: Campbell, N. A.; Ree	ce, J. B.;	Urry, Li	sa; Cain,	M,L.; W	asserma	n, S. A.;							
Minorsky, P. V.; J	Jackson, R. B. Pearson Education L	td.												
2. Outlines of Bio	chemistry, Conn, E.E; Stumpf, P.K	; Bruenir	ng, G; Do	oi, R.H. Jo	ohn Wile	y and So	ons							
3. Principles of Bi	iochemistry (V Edition), By Nelson	ı, D. L.; a	nd Cox,	M. M.W.	H. Freem	nanand (Company							
4. Molecular Gene	etics (Second edition), Stent, G. S.;	and Cale	nder, R.	W.H. Fre	eman an	dcompa	ny, Distril	buted						
bySatish Kumar J	ain for CBS Publisher				-									
5. Microbiology.	Prescott, L.M J.P. Harley and C.A.	Klein 19	95. 2nd e	dition W	m, C.Bro	wn Pub	lishers.							
COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
-----	-----	-----	-----	-----	------	---------	----------	-------	-----	------	------	------	-----------------------------	------------------------------
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	1	2	-	-	-	-	-	-	-
CO2	-	-	-	-	-	1	2	-	-	-	-	-	-	-
CO3	-	-	-	-	-	1	2	-	-	-	-	-	-	-
CO4	-	-	-	-	-	1	2	-	-	-	-	-	-	-
CO5	-	-	-	-	-	1	2	-	-	-	-	-	-	-
AV	-	-	-	-	-	1	2	-	-	-	-	-	-	-

Department: Elect	rical and Electronics Engineering	Program	nme: B.	Tech., (E	E)						
Semester: Fourth		Subject	t Catego	ry: PCC	Ser	nester]	Exam Typ	e: TY			
Course Code	Course	Pe	eriod / W	'eek	Credit	M	aximum M	Iarks			
	Course	L	Т	Р	C	CA	SE	TM			
EEA110	ANALOG ELECTRONICS	3	-	-	3	25	75	100			
Prerequisite	Biasing of BJT and FET circuits.										
Course Outcome	Course Ou	utcome S	tatement	t			Lev	vel			
CO1	Develop small signal hybrid mode analysis of linear amplifiers	el for BJ	T and Fl	ET which	are used	in the	Арј	ply			
CO2	Analyze the operation and charact amplifiers and understand the ad transistor amplifier and analyse th	eristics of vantages e single	of multi s of thes stage am	transistor se circuits plifiers.	and mult s over sir	istage 1gle –	Ana	lyse			
CO3	Analyse the concepts of a tuned an	nplifier a	and pow	er amplifi	er		Ana	lyse			
CO4	Explain feedback concepts and configurations and determine circu	analyze uit chara	the fou cteristics	r ideal fe s	edback o	circuit	Under	stand			
CO5	Analyze and design oscillators th frequencies	at provic	le sinuso	oidal sign	als at spe	cified	Ana	lyse			
UNIT-I	Small Signal Amplifiers						Periods:	09			
Two port devices	and hybrid model- transistor hybr	id mode	l and H-	paramete	rs – detei	rminati	on of H-				
parameters from	transistor characteristics-Analysis	of CB,	CE and	d CC cire	cuits usir	ng H-pa	arameter	CO1			
model-Compariso	on of CB, CE and CC circuits-CE	amplifi	er with	unbiased	emitter 1	resistan	ce. Low	COI			
frequency FET me	odel- analysis of common source ar	nd comm	on drain	circuits.							
UNIT-II	Differential and Multistage Am	olifiers					Periods:	09			
Differential amplifier – Basic BJT differential pair – Operation – DC Transfer Characteristics – small											
signal equivalent	circuit analysis - Common mode	rejection	1 ratio –	- Differen	tial and	Commo	on mode				
gains – Differenti	al and common mode input imped	ances –	Differen	tial ampli	ifier frequ	lency r	esponse.	CO2			
Multi stage amp	lifier - Cascading amplifier-direc	t couple	d and	capacitor	coupled	two s	tage CE				
amplifiers-Darling	gton pair–Cascode amplifier.	_									
UNIT-III	Tuned and Large Signal Amplif	iers					Periods:	09			
Tuned amplifier c	ircuits-single tuned-double tuned-s	stagger tu	ined am	plifiers							
Classification of	Power amplifiers–Class A power a	mplifier-	-direct c	coupled at	nd transfe	ormer o	coupled-	~ ~ ~			
Class B amplifie	er–push-pull arrangement and co	mpleme	ntary sy	mmetry	amplifier	s– Co	nversion	CO3			
efficiency calcula	ations – cross-over distortion–Cla	iss AB	amplifie	er–Ampli	tier disto	rtion -	- Power				
transistor heat sin	king – Class C and Class D amplifie	ers.									
UNIT-IV	Feedback Amplifiers						Periods:	09			
Feedback concept	t-Gain with feedback-General cha	racterist	ics of n	egative fe	edback a	amplifi	ers-Four				
basic types of fe	edback and the effect on gain, in	put and	output	resistanc	es. Multi	istage f	eedback	CO4			
amplifiers-Two s	tage CE amplifier with series volt	age neg	ative fee	edback –	frequenc	y respo	onse and				
stability.											
UNIT-V	Oscillators						Periods:	09			
Conditions for su	stained oscillations-Barkhausen cri	iterion-L	LC oscill	lators–ana	lysis of I	Hartley	, Colpitt				
and Tuned oscill	ators–RC oscillators–Phase shift	and We	in-bridge	e types–a	nalysis c	of the	circuits-	CO5			
Crystal oscillators	and frequency stability-UJT relax	ation osc	illator.								
Total Contact He	ours: 45 Tutorial Hours: -		Practica	l Hours:	00	Tot	al Hours:	45			
Reference Book:											
1. Robert L. Boyle	estad and Louis Nashelsky, Electron	ic Devic	es and C	Circuit Th	eory, Prei	ntice-H	all India, 2	2009.			
2. David A Bell, E	Electronic Devices and Circuits, PHI	l, 4thEdi	tion, 200)6.							
3. Jacob Millman	and Christos C. Halkias, Electronic	Devices	and Cire	cuits, Tata	a-McGrav	v Hill, 1	2003.				

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	0	-	-	-	-	-	-	-	1	2	1
CO2	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO3	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO4	3	2	1	1	-	-	-	-	-	-	-	1	2	1
CO5	3	3	2	-	-	-	-	-	-	-	-	1	2	1
AV	3	2.8	1.8	0.6	-	-	-	-	-	-	-	1	2	1

Department: Elect	rical and Electronics Engineering	Program	nme: B.	Tech., (E	E)					
Semester: Fourth		Subject	t Categor	ry: PCC	Ser	nester I	Exam Typ	e: TY		
G G 1	G	Pe	riod / W	eek	Credit	Ma	aximum M	larks		
Course Code	Course	L	Т	Р	С	CA	SE	TM		
EEA111	PULSE AND DIGITAL CIRCUITS	3	-	-	3	25	75	100		
Prerequisite	Vector Calculus and Material Scie	ence		•	•					
Course Outcome	Course O	utcome S	tatement				Lev	vel		
CO1	Explain about wave shaping and s	sweep cir	cuits				Under	stand		
CO2	Design and implement different ty gates'	ypes of c	ombinati	onal circu	uits using	logic	App	oly		
CO3	Design and implement different ty	pes of co	ounters u	sing flip	flops		Арј	oly		
CO4	Design and implement different ty	pes sequ	ential cir	rcuits usi	ng flip fl	ops	Ap	oly		
CO5	Illustrate the features about variou	is types c	of memor	ries			Under	stand		
UNIT-I	Pulse Circuits						Periods:	09		
Linear wave shap astable multi-vibr sweeps – Fixed a device – UJT.	ing circuits: RC, RL and RLC circu ators using BJT– Schmitt trigger amplitude sweep – Constant currer	uits – Pu circuit u nt sweep	lse transf sing BJ . Multivi	former - Ι Γ– Voltaş ibrators u	Bistable, ge and cu sing neg	monosta urrent s ative re	able and awtooth esistance	CO1		
UNIT-II	Combinational Circuits						Periods:	09		
Binary arithmetic–BCD addition and subtraction–Code converters-Parity generator–Binary to BCD and BCD to binary conversions–Design of combination circuits using NAND and NOR gates–Design of encoders, decoders, multiplexers, de-multiplexer–Serial adders–Binary multiplier – Simplification of k- man Elin Elons: PS, D, IK and T types – IC details of 7474, 7476 and 7490										
UNIT-III	Sequential Circuits						Periods:	09		
Design of counter ring counter, Joh registers.	rs using Flip-flops– Synchronous, a nson counter, BCD counter–Shift	asynchro register	nous, Up s - Paral	o/Down c llel/serial	ounters, and bi-c	decade lirection	counter, nal shift	CO3		
UNIT-IV	Design of Sequential Circuits						Periods:	09		
Design of Synchronous sequential circuits: Model Selection– State transition diagram – state synthesis table – Design equations and circuit diagram– State reduction technique. Asynchronous sequential circuits – Analysis – Problems with asynchronous sequential circuits – Design of asynchronous sequential circuits State transition diagram, Primitive table, State reduction, state assignment and design equations										
UNIT-V	Semiconductor Memories and P	Program	mable lo	gic devic	es		Periods:	09		
Memory types an RAM, - sequenti Programmable log	d terminologies – ROM – PROM, al memories, Charge coupled dev gic devices(PLD).	EPROM	, EEPRO D)–Bloc	DM, RAM k diagrar	I- Static I n based	RAM, I introdu	Dynamic ction to	CO5		
Total Contact Ho	ours: 45 Tutorial Hours:00	Pra	ctical H	ours: 00	T	'otal Ho	ours: 45			
Reference Book:		DIT								
 David A Bell, Solid State Pulse Circuits, 4th Edition, PHI, 2008. A. P. Malvino and D.P. Leach, Digital Principles and Applications, TMH, 2006 Flovd & Jain, Digital Fundamentals, Pearson Education, 2007. 										

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	1	2	1
CO2	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO3	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO4	3	2	1	1	-	-	-	-	-	-	-	1	2	1
CO5	3	3	-	-	-	-	-	-	-	-	-	1	2	1
AV	3	2.8	1.2	0.6	-	-	-	-	-	-	-	1	2	1

Department: Elect	rical and Electronics Engineering	Program	mme: B. '	Tech., (E	E)						
Semester: Fourth		Subject	t Categoı	ry: PCC	Sei	nester I	Exam Typ	e: TY			
Course Code	Course	Pe	eriod / W	eek	Credit	Ma	aximum M	larks			
	Course	L	Т	Р	C	CA	SE	TM			
EEA112	Electrical Machines - II	3	-	-	3	25	75	100			
Prerequisite	Electrical Machines-I										
Course Outcome	Course O	utcome S	tatement				Lev	vel			
CO1	Explain the construction and oper and synchronous machines.	ration of	inductio	on motor,	special n	notors	Under	stand			
CO2	Analyse the performance of three circuit.	e phase i	nduction	motor us	sing equi	valent	Anal	lyse			
CO3	Explain suitable starting and s performance of three phase induct	speed co tion moto	ontrol moors	ethods to	o enhanc	e the	Under	stand			
CO4	Compute voltage regulation of all various methods.	ternator l	by condu	icting suit	table test	using	Apj	ply			
CO5	Analyse the performance of Sync and load.	chronous	motor b	y varying	g the exci	itation	Ana	lyse			
UNIT-I	Three Phase Induction Motor						Periods:	09			
AC windings –	MMF of distributed winding - Re	otating 1	nagnetic	field -	Construc	tion, ty	pes and				
operation of 3-ph	induction motors - Equivalent cir	rcuit – T	orque-Po	ower rela	tionships	– Perf	ormance	CO1			
characteristics - E	ffect of supply voltage and rotor res	sistance o	on torque	e – Tests	_						
UNIT-II	Induction Motor Starting and S	peed Co	ntrol				Periods:	09			
Circle diagram - Starting methods- braking-Cogging and crawling - Speed control methods and											
influence on spee	d-torque curve– Double cage rotor	- Induct	ion gene	rator – ty	pes – Ind	uction	machine	CO2,3			
dynamics – Synch	ronous induction Motor										
UNIT-III	Synchronous Generator						Periods:	09			
Types, construction by synchronous in infinite bus-bars synchronous mach	n and principle of operation – EMI npedance, MMF and Potier triangle – Power transfer equations, capab nines and power angle characteristic	e equation e method fility curr cs - Deter	n – arma s - Load ve – Tw rminatior	ture react character o reactio n of Xd &	tion – Vo ristics –S n model z Xq by si	Itage re ynchror of sali- lip test.	gulation nizing to ent pole	CO1,4			
UNIT-IV	Synchronous Motor					Î	Periods:	09			
Principle of oper-	ation – Power flow – phasor diag	grams –	Torque	angle ch	aracterist	ics – E	Effect of				
varying load and	Excitation – Excitation and power of	circles fo	r synchro	onous ma	chine – '	V' and	inverted	CO5			
'V' curves – hunti	ng – Synchronous phase modifier –	- Inductio	on motor	Vs Syncl	hronous r	notor.					
UNIT-V	Single Phase and Special Machi	nes					Periods:	09			
Single phase indu	action motors - Rotating magnetic	Vs alter	mating n	nagnetic 1	field - D	ouble re	evolving				
field theory $-$ To	rque - speed characteristics – Type	es – Reli	uctance	motor– T	wo phase	e Servo	motor-	CO1			
Stepper motors –	Universal motor- linear induction m	notor - pe	rmanent	magnet I	DC motor						
Total Contact Ho	ours: 45 Tutorial Hours:00	Pra	ictical H	ours: 00	Ĩ	otal Ho	ours: 45				
Reference Book:	1DD K-4 El		.1.1'1.'	C. 141	NI D . 11	.: 441. T	7 1:4:	17			
1. I.J. Nagrath and	D.P. Kotnari, Electric machines, I	.M.H. PU	lolisning	s Co.Lta, . S. Chand	New Dell	ni, 4th f	Edition, 20)1/.			
2. D.L. Illelaja, E 3. Battacharva S k	C Electrical Machines Technical T	eachers 7	Training	5. Chang	, 2000. 2nd Editi	on 200	13				
4 P C Sen Princi	inles of Electric Machines and Powe	er Electro	onics W	ilev Stude	ent Editic	n 2nd	75. Edition 20	08			
5. M.N. Bandvons	adhyay, Electrical Machines - Theor	rv and Pr	actice P	HL 2007		, 211 0 .	24111011,20				

5. M.N. Bandyopadhyay, Electrical Machines - Theory and Practice, PHI, 20076. J.B. Gupta, Theory and Performance of Electrical Machines, J.K.Kataria& Sons, 13th Edition,2004.

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	-	-	-	-	-	-	-	-	1	2	1
CO2	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO3	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO4	3	2	2	1	-	-	-	-	-	-	-	1	2	1
CO5	3	3	2	1	-	-	-	-	-	-	-	1	2	1
AV	3	1.8	1.8	0.8	-	-	-	-	-	-	-	1	2	1

Department: Con	puter Scien	ce and Engineering	Program	mme: B.	Tech., (E	E)					
Semester: Fourth	l		Subject	t Categor	ry: ESC	Sei	nester E	xam Type	e: TY		
C C 1		0	Pe	riod / W	eek	Credit	Ma	ximum M	arks		
Course Code		Course	L	Т	Р	С	CA	SE	TM		
CSA234	Data Strue Oriented I	ctures and Object- Programming	3	-	-	3	25	75	100		
Prerequisite	-	8 8	1	1	1	1		-11			
Course Outcome		Course O	utcome S	tatement				Lev	el		
CO1	Choose app	propriate Searching and	l Sorting	techniqu	ies.			App	oly		
CO2	Compare a	nd demonstrate Linear	and Non	-linear da	ata struct	ures.		Unders	stand		
CO3	Apply Line	ear and Non-linear data	structure	es for a g	iven prob	olem.		App	oly		
CO4	Define Obj	ect-Oriented Programn	ning con	cepts.				Under	stand		
CO5	Develop Polymorph	C++ programs using ism.	g the	concepts	s of In	heritance	and	App	oly		
UNIT-I Ar	ravs, Search	ning and Sorting						Period	ls: 09		
Algorithm: Chara	cteristics –Re	epresentation – Efficier	ncv of A	lgorithms	s– Data S	tructures	: Charac	cteristics			
-Types -Arrays: Searching: Linear Sort, Quick Sort a	Introduction Search and nd Heap Sor	– Types – Representa Binary Search– Sorting t.	ation –Op g techniq	perations ues: Inse	s – Appli ertion Sor	cations: S t, Selecti	Sparse N on Sort,	Matrix – , Bubble	CO1		
UNIT-II Li	near Data St	tructures						Period	ls: 09		
Stacks: Introducti Operations– Circu Linked List: Intr Applications: Poly	on – Operati Ilar queues – oduction – f ynomial Add	ions – Applications: E Priority queues – Dou Singly Linked List – ition.	valuation ible ende Circularl	n of Expr ed queues y Linked	ressions - s – Appli d List ar	- Queues cations: 3 d Doubl	: Introd lob Sche y Linke	uction – eduling– ed List–	CO2		
UNIT-III No	on-Linear Da	ata Structures						Period	ls: 09		
Trees: Introduction Terminology – Re	on –Terminol epresentation	logy – Binary tree –R – Traversals – Single S	epresenta Source ar	ation – 7 nd All Pa	Fraversals	– Graph est path a	: Introdu Igorithm	uction –	CO3		
UNIT-IV In	troduction to	o Object-Oriented Pro	ogrammi	ing		•		Period	ls: 09		
Basics Concepts Structures – Fun Objects– Construct	of Object-O ctions in C+ ctors and Des	riented Programming +: Inline Functions – structors– Friend Functi	– Structu Recursi ions.	ure of C on– Fun	++ – Tol action Ov	kens-Exp verloading	ressions g – Cla	-Control sses and	CO4		
UNIT-V Co	ncepts of O	bject-Oriented Progra	mming					Period	ls: 09		
Operators Overlo Polymorphism– V	ading: Unar Virtual Functi	ry and Binary Opera ons – Exception Handl	itors– T ing: Basi	ype Cor cs and M	nversions Iechanisn	– Inhei n.	ritance-'	Types –	CO5		
Total Contact H	Iours: 45	Tutorial Hours:00)	Practica	al Hours:	00	Tot	tal Hours	:45		
Reference Book:											
1. E Balagurusam	ference Book: E Balagurusamy, Data Structures, McGraw Hill Education (India) Private Limited, 2018. G A VijavalakshmiPai Data Structures and Algorithms: Concepts Techniques and Applications McGraw Hill										

2. G A VijayalakshmiPai, Data Structures and Algorithms: Concepts, Techniques and Applications, McGraw Hill Education (India) Private Limited, 2008.

3. Ellis Horowitz, Sartaj Sahni and Susan Anderson Freed, Fundamentals of Data Structures in C, Second Edition, Universities Press (India) Private Limited, 2018.

4. E. Balagurusamy, Object Oriented Programming with C++, Seventh Edition, McGraw Hill Education (India) Private Limited, 2017.

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outco (PS	ram; rific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	1	1	1
CO2	3	3	1	-	-	-	-	-	-	-	-	1	1	1
CO3	3	3	3	1	-	-	-	-	-	-	-	1	1	1
CO4	3	3	1	-	-	-	-	-	-	-	-	1	1	1
CO5	3	3	3	1	-	-	-	-	-	-	-	1	1	1
AV	3	3	1.8	0.4	-	-	-	-	-	-	-	1	1	1

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)												
Semester: Fourth			Subject	t Categoi	y: PCC	Sei	nester I	Exam Type	e: LB			
Course Code		Course	Pe	riod / W	eek	Credit	Ma	aximum M	Iarks			
		Course	L	Т	Р	C	CA	SE	TM			
EEA113	Electron	nics Laboratory-II	-	-	3	1.5	25	75	100			
Prerequisite	Electron	Devices and Circuits Cou	urse (Thi	rd semes	ster), Ana	log Elect	ronics (Fourth Se	mester),			
Trerequisite	Electron	ics Lab – I (Fourth semes	ter) and	Pulse and	l Digital 1	Electroni	cs (Fou	rth semest	er).			
Course Outcome		Course Or	utcome S	tatement				Lev	vel			
CO1	Design	and implement single-	stage R	C coup	led amp	lifier an	d the	Apt	olv			
	Barkhau	sen criterion for oscillator	operatio	on.		4 3 6			<u></u>			
CO2	Design multivib	and implement transis rators.	stor ba	sed Ast	able and	d Monc	stable	Арр	ply			
	Design c	ircuits for detection of ar	bitrary le	evels in a	continuo	us-time a	analog					
CO3	signal us	sing Schmitt trigger circ	uit and	construc	t a relaxa	ation osc	illator	Арр	ply			
	circuit m	aking use of negative rest	istance c	haracteri	stics of U	JT.						
	Design and implement combinational logic circuits like adder, subtractor,											
CO4	encoder, decoder, multiplexer and demultiplexer circuits using logic gates. Apply											
	Able to	construct different cate	egories	of flip-f	lops and	digital	code-		<u> </u>			
	converters using logic gates.											
COF	Design a	and implement sequentia	l logic o	circuits l	ike Up/D	own/MC	D-10,		1			
05	King and	a Johnson counters using	g IC /4/	b, and t	est the of	peration	of the	Арр	ply			
Any 10 Evenoving	uecaue c	ouniei IC 7490.										
1 Erequency rest	ents	ngistor based single stage	PC con	mlad am	plifior							
2 Transistor base	d RC phas	ansistor based single stage		ipieu ani	piiner.				CO1			
3 Transistor base	$d \Delta stable$	and Monostable Multivib	rator									
4 Transistor base	d Schmitt	trigger	14101.						CO2			
5 UIT relaxation		115501.							002			
6. Study of logic	gates, veri	fication of De-Morgan's l	laws and	realizati	on of bas	ic gates r	ising un	iversal				
gates.	8								~~~			
7. Combinational	logic circ	uits – full and half Adder/	Subtract	or, arbitr	ary comb	inational	logic c	ircuit.	CO3			
8. Encoder and de	ecoder usii	ng logic gates.		,	2		<u> </u>					
9. Multiplexer an	d de-multi	plexer using logic gates.										
10. Realization of	[•] R-S, D, J-	K and T flip-flops using	logic gat	es.					CO4			
11. Code converte	ers (BCD-t	o-GRAY, BCD-to-Excess	s 3) usin	g logic g	ates							
12. Sequential log	ic circuits:	: Up/Down counters/MOI	D-10 cou	nters usi	ng IC 747	76 (J-K N	later-Sl	ave				
Flip-flop).		-			-				CO5			
13. Ring counter a	and Johnso	on counter using IC7476.										
14. Decade counte	er using IC	7490.										
Total Contact H	ours: 00	Tutorial Hours:00]	Practical	Hours:	45	Tot	al Hours:	:45			

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	-	-	1	-	-	-	1	3	2
CO2	3	3	2	3	3	-	-	1	-	-	-	1	3	2
CO3	3	3	2	3	3	-	-	1	-	-	-	1	3	2
CO4	3	3	2	3	3	-	-	1	-	-	-	1	3	2
CO5	3	3	2	3	3	-	-	1	-	-	-	1	3	2
AV	3	3	2	3	3	-	-	1	-	-	-	1	3	2

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)													
Semester: Fourth			Subject	Categor	y: PCC	Ser	nester F	Exam Type	e: LB				
Course Code		Course	Pe	riod / W	eek	Credit	Ma	iximum M	larks				
		Course	L	Т	Р	C	CA	SE	TM				
EEA114	Electric	al Machines	_	_	3	1.5	25	75	100				
	Laborat	ory-II			5	1.0	20	,,,,	100				
Prerequisite	-	~ ~ ~ ~	~					-					
Course Outcome		Course C	Dutcome S	tatement		0.1:00		Lev	7 el				
CO1	Analyse types of	the operation, performant Induction machines under	nce and ther loaded	e charact and unlo	eristics o aded con	f differen ditions.	it	Anal	lyse				
CO2	Apply su	itable starting and speed	l control n	nethods t	o enhanc	e the		App	oly				
<u> </u>	Analyze	the speed control technic	aues indu	ntion mo	tor			Anal	VEA				
Perform the power exchange operation with busbar by synchronizing													
CO4	alternators.												
CO5	Analyse	the performance and the	character	istics of	Synchror	ious moto	or and	Anal	lyse				
	universal motor.												
Any IU Experime	Any 10 Experiments												
1. Performance de		n of 3-phase squirrer cag	ge mauch		r by Ioad	test							
2. Performance de		n of 3-phase slip ring in	auction IV	$\frac{1010r \text{ by }}{2}$		laadina ()	Via laad	au d					
S. Performance de Blocked Rotor) te	ste using e	an of 5-phase squiffer cag	e muucu		r by non-	loading (1	NO IOAU	and	CO1				
<u>A</u> Performance de	terminatio	n of single phase Induct	ion Motor	n r by load	test								
5 Study of starter	s and snee	d control of Induction M	lotor	0 y 10au	icsi								
6 Synchronization	n of three 1	hase Alternator with bu	s hars						CO2				
7 Performance de	terminatio	n of 3-phase Induction (Generator	under or	id connec	ted mode	`		02				
8 Performance de	terminatio	n of 1-phase Alternator	by load te	st					CO3				
9 Performance de	terminatio	n of 3-phase Alternator	by load te	st									
10 Performance d	leterminati	on of 3-phase Alternator	r by non-l	oading ((C & SC) tests by	EME N	MMF					
&Potier Triangle	methods		i oʻj non i	ouding () (0505 05)	2.011,1		CO4				
11. Determination	of direct a	axis reactance and quadr	ature axis	reactanc	e of a sal	ient pole	alternat	or by					
slip test.		1				1 -							
12. Performance c	haracterist	tics of an auto synchrono	ous motor						CO5				
13. Performance c	haracterist	tics of Universal Motor							005				
Total Contact H	otal Contact Hours: 00 Tutorial Hours:00 Practical Hours: 45 Total Hours:45												

COs					Prog	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)	
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1													PSO2
CO1	3	3	3	3	3	-	-	1	-	-	-	1	3	1
CO2	3	3	2	3	3	-	-	1	-	-	-	1	3	1
CO3	3	3	3	3	3	-	-	1	-	-	-	1	3	1
CO4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1	3	1
CO5	3 3 2 3 3 1												3	1
AV	3	3	3	3	3	_	_	1	-	_	_	1	3	1

Department: Com	puter Science and Engineering	Program	mme: B.	Гесh., (Е	E)					
Semester: Fourth		Subject	t Categor	y: ESC	Ser	nester Ex	кат Тур	e: LB		
Comme Co. 1	C	Pe	riod / W	eek	Credit	Мах	kimum N	Iarks		
Course Code	Course	L	Т	Р	С	CA	xam Type ximum M SE 75 75 Lev App App App App	TM		
	Data Structures and Object -									
CSA235	Oriented Programming	-	-	3	1.5	25	75	100		
	Laboratory									
Prerequisite	-	•		•			•			
Course Outcome	Course Or	utcome S	tatement				Lev	vel		
CO1	Choose and implement appropri application	ate Sear	ching/so:	rting algo	orithms f	for an	Ap	ply		
CO2	Implement data structures using C	1					Ap	ply		
CO3	Apply Linear and Non-linear data	structure	es for a g	iven prob	olem.		Ap	ply		
CO4	Develop and implement C++ p	orograms	using o	of classe	s and ol	ojects,	Ap	ply		
CO6	Design C^{++} programs with inherit	s. inheritance and run time polymorphism.								
Evperiments for	Cycle 1			e porymo			<u></u>	piy		
1 Implementation	of Linear search and binary search									
2 Implementation	Insertion sort Selection sort Bubb	de sort (Duick sor	t and He	an Sort	CO1				
3. Array impleme	ntation of Stacks and Queues	, (C 5011, (Zuien soi	t und 110	<i>ip</i> 5011.					
4. Implementation	of Singly and Doubly Linked List.							CO2,3		
5. Implementation	of Binary Tree Traversals.							600.0		
6. Implementation	of Graph Traversals and shortest p	ath Algo	rithms.					CO2,3		
Experiments for	Cycle 2						•			
7. Programs to im	7. Programs to implement classes and objects.									
8. Programs to im	8. Programs to implement constructors and destructors.									
9. Programs to im	plement different types of inheritan	ce.						C05		
10. Programs to in	nplement virtual functions to demon	nstrate th	- 3 1.3 25 75 ne Statement Leve bearching/sorting algorithms for an Apply tures for a given problem. Apply ums using of classes and objects, Apply and run time polymorphism. Apply rt, Quick sort and Heap Sort. (lgorithms. (e the use of run time polymorphism. (
Total Contact H	ours: 00 Tutorial Hours:00]	Practical	Hours:	45	Tota	l Hours	:45		

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO												
CO1	3	3	3	3	3	-	-	2	-	-	-	1	2	1
CO2	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1
CO3	3	3	3	3	3	-	-	2	-	-	-	1	2	1
CO4	3	3	3	3	3	-	-	2	-	-	-	1	2	1
CO5	3 3 3 3 2												2	1
AV	3	3	3	3	3	-	-	2	-	-	-	1	2	1

V SEMESTER

Department: Elect	rical and Electronics Engineering	Program	mme: B. '	Tech., (E	E)						
Semester: Fifth		Subject	t Categoi	y: PCC	Ser	nester E	Exam Type	e: TY			
G G 1	G	Pe	riod / W	eek	Credit	Ma	iximum M	larks			
Course Code	Course	L	Т	Р	С	CA	SE	TM			
EEA115	Analog and Digital Integrated Circuits	3	-	-	3	25	75	100			
Prerequisite	Fundamentals of Analog circuits a	and Digit	al circuit	ts	•		•				
Course Outcome	Course Or	utcome S	tatement				Lev	vel			
CO1	List Digital IC families and outline	e IC fabi	rication t	echniques	5		Under	stand			
CO2	Interpret operational amplifier IC open and closed loop configuratio	C data sl ns	neet and	analyse	its work	ing in	Anal	lyse			
CO3	Experiment with different types regulators.	of A-D a	and D-A	converte	ers and v	oltage	Anal	lyse			
CO4	Design IC based filters and wavef	orm gen	erators				Cre	ate			
CO5	Construct multivibrators using tim	ners and	build app	olications	using PL	L	Cre	ate			
UNIT-I	IC Fabrication and Logic Famil	ies			U	i	Perio	ds: 9			
Monolithic IC tec	hnology planar process Bipolar jun	ction tra	nsistor. H	FET fabri	cation. M	OS and	CMOS				
technology. Digita	al Logic families- terminologies; D'	TL, HTL	. TTL. H	ECL, PM	OS, NMO	DS, CM	OS, I2L	601			
- basic gates, circuit operation, configurations/improved versions, characteristics, advantages,											
limitations, Comparison, applications.											
UNIT-II	Operational Amplifiers and Its	Charact	eristics				Perio	ds: 9			
Introduction to Li	near ICs -Operational amplifier IC	741 Blo	ck diagra	um and Cl	haracteris	stics – Io	deal and				
practical. Inverting	g, non-inverting and difference amp	lifier. A	dder, Sul	otractor, I	ntegrator	, Differe	entiator-	cor			
Comparator- Wind	dow detector- Regenerative compar	ator (Sch	nmitt trig	ger) - Pre	ecision re	ctifier-1	Log and	02			
antilog amplifiers,	Instrumentation amplifiers.		-	- /			-				
UNIT-IIIVoltage Regulators & A-D and D-A ConvertersPeriods: 9											
Voltage Regulator	rs-Series /shunt op-amp regulator, I	C Voltag	ge Regula	ator. Digi	tal to Ana	alog cor	verters:				
specifications-type	es- weighted resistor type, binary la	udder, tes	ting of I	DAC. Ana	alog to D	igital co	nverter:	CO3			
specifications-type	es- counter ramp, flash converter, su	accessive	e approxi	mation a	nd dual sl	ope con	verters.				
UNIT-IV	Active Filters and Waveform Ge	enerator	'S				Perio	ds: 9			
First and second	l order Active filters-Low pass,	, Highpa	ass, Bar	idpass ai	nd Band	reject	filters-				
characteristics, H	ligher order filters. Oscillators-	RC Pha	ase shif	t and V	Vien-bric	lge osc	cillators.	CO4			
Multivibrators -	Monostable and Astable operation	on. Wav	eform g	generator-	Square,	Triangu	lar and				
sawtooth wavefor	m generators.										
UNIT-V	Phase Lock Loop and Timers						Perio	ds: 9			
Building blocks of	f PLL - Characteristics - Derivation	s of expi	essions i	for Lock	and Capti	ure rang	es. PLL				
IC 565, Applicatio	ons- Frequency Synthesis - Frequen	cy Trans	lation- F	M/AM D	emodulat	10n.		CO5			
555 Timer- Funct	ional block diagram, pin details an	id descri	ption-Mo	onostable	and Asta	able ope	eration -				
Schmitt trigger-M	issing pulse detector-dual timer ICS	036-App	ications		0.0		1.77				
Total Contact He	ours: 45 Tutorial Hours: 00		Practical	Hours:	00	Tota	al Hours:	45			
Reference Book:											
1. Ramakant A. G 2. Robert F. Coug Edition PHL 20	ayakwad, "Op-Amps and Linear int hlin, Frederick F. Driscoll, "Operati	ional Am	plifiers a	, PHI Pvt and Linea	Lid, Four	rth Editi ted Circ	ion, 2002 uits", Sixt	:h			
3. D. Roy Choudh paperback 2017	ury, Shail B. Jain, Linear Integrated	d Circuits	s, New A	ge Intern	ational (F	P) Ltd, F	Fourth Edi	tion,			
4. Paul R. Gray, P Circuits", Wiley	aul J. Hurst , Stephen H. Lewis, Rol y International, Fifth Edition , 2009	bert G. N	Aeyer, "	Analysis	and Desig	gn of Ai	nalog Inte	grated			
5. Herbert Taub an	nd Donald Schilling, Digital Integra	ted Elect	tronics, 7	lata McG	raw Hill	Edition,					

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												
CO1	3	2	2	2	2	1	-	1	2	-	-	2	2	3
CO2	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												3
CO3	2	2	2	2	2	1	-	1	2	-	-	2	2	2
CO4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											2	3	3
CO5	3 3 3 2 1 - 1 2												3	3
AV	2.8	2.6	2.6	2.4	2.2	1	-	1	2	-	-	2	2.4	2.8

Department: Elect	rical and Electror	nics Engineering	Program	mme: B. '	Fech., (E	E)				
Semester: Fifth			Subjec	t Categoi	y: PCC	Ser	nester I	Exam Typ	e: TY	
Course Code	Ca	11#50	Pe	eriod / W	eek	Credit	Ma	aximum M	larks	
Course Code		ourse	L	Т	Р	С	CA	SE	TM	
EEA116	POWER ELH	ECTRONICS	3	-	-	3	25	75	100	
Prerequisite	Should have the Analysis and El	hrough knowledge lectronic Devices a	e and co and Circu	ompleted iits.	the bas	ic course	es on H	Electrical	Circuits	
Course Outcome		Course O	utcome S	tatement				Lev	vel	
CO1	Explain the ch basic principle	aracteristics of mo	odern po ious pow	ower elever-electi	etronie de	evices an uits	nd the	Under	stand	
CO2	Extend the fur electronic switc	damental principl hes and the differe	les invol ent metho	ved in to com	the operant operant operant operation of the operation opera	tion of j 1	power	Ana	lyse	
CO3	Design differer converters alor different domai	nt types of phase- ng with necessary ns of engineering	controlle y protec	ed single tive circ	phase an puits for	nd three applicati	phase on in	Cre	ate	
CO4	Design differen	t types of DC-DC	converte	r and inv	rerter			Eval	uate	
<u>CO5</u>	Design single p	hase and three pha	se step u	p/step do	own AC c	ontroller		Eval	uate	
UNIT-I Power Semiconductor Devices Periods: 0										
Power switching of TRIAC - MOSF protection-di/dt - series and parallel	levices overview ET - GTO - IO dv/dt - over curr operation – SCR	r: ideal & real swit GBT- V-I charact rent - over voltage triggering circuits	tching cł teristics e; specifi s.	aracteris - turn-o cations -	stics - pov n - turn- losses -	ver diode off meth thermal o	e - BJT nods; T characte	- SCR - Thyristor eristics -	CO1	
UNIT-II	Controlled Red	ctifiers						Period	ls: 09	
Operation and ana and RL loads with time control - outp Power factor and operation with and	lysis of single and and without free out voltage - inpu harmonic impro- l without circulat	nd three phase rect wheeling diodes; of t current - power fa vement methods - ing current.	tifiers - l converte actor - ef series c	nalf and t r and inv ffect of lo onverter	fully cont erter oper oad and so - dual co	rolled co ation - w ource indu nverters	nverters aveform uctance - four-o	s with R ns - gate s. quadrant	CO2	
UNIT-III	Choppers	0						Period	ls: 09	
Principles of high commutated chop principle of opera control - duty cycl	n power chopper per - multi-phas tion of buck - bo e.	circuits - class A e chopper - multi ost and buck boost	A, B, C, -quadrar t regulate	D & E at operations; time	- voltag on - swi ratio con	e commu tched mo trol - var	itated - ode regu iable fr	current ulators - equency	CO3	
UNIT-IV	Inverters							Perioc	ls: 09	
Principles of high power VSI and CSI inverters - Modified McMurray - auto sequential inverter - waveforms at load and commutating elements; inverters: analysis of three phase inverter circuits with star and delta loads; control and modulation techniques: unipolar - bipolar schemes– voltage and frequency control; harmonics study.										
UNIT-V	AC Chopper a	nd Cycloconverte	ers					Period	ls: 09	
Principle of single power factor relation phase to single-photologic expression Applications: regular systems - reactive	e-phase AC volta ion; Different con nase and three-ph n. ilated power supp power compensa	age controller - ON nfigurations of thre hase to single-phas ply - UPS - solid-s ation.	N/OFF a: ee-phase e cycloc tate mote	nd phase AC volta onverter or starter	angle co age contro circuits - s - static	ntrol out oller; prir - Wavefo circuit br	put volt nciple o orms and eakers -	tage and f single- d output - HVDC	C05	
systems - reactive power compensation. Practical Hours: 00 Total Hours: 00 Total Contact Hours: 45 Tutorial Hours: 00 Practical Hours: 00 Total Hours: 00										

Reference Book:

1. M.H. Rashid, "Power Electronics", PHI, New Delhi, 2007.

2. P.S. Bimbhra, "Power Electronics", Khanna Publishers, New Delhi, 2008.

3. Ned Mohan, M. Underland, William P. Robbins, "Power Electronics Converters, applications and design", JohnWiley & sons, Singapore, 2001.

4. M.D. Singh, K.B. Khanchandani, "Power Electronics", Tata McGraw Hill, New Delhi, 2007.

5. Cyril W. Lander, "Power Electronics", McGraw Hill Book Company, Singapore (1993).

6. Williams B.W., "Power Electronics Devices, drivers, applications and passive components", McMillan Press

Ltd., London, 1992.

COs					Prog	ram Out	comes ((POs)					Prog Spec Outco (PS	gram cific omes Os)
	PO1	PO2	PO12	PSO1	PSO2									
CO1	3	3	-	2	2									
CO2	3	2	3	2	1	-	-	-	-	1	1	-	1	2
CO3	3	3	2	1	3	-	-	-	1	1	1	1	1	3
CO4	3	3	2	1	3	-	-	-	1	1	1	1	2	2
CO5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													2
AV	3	2.8	2.2	1	2.2	-	-	0.2	0.8	1	1	0.6	1.6	2.2

Department: Elect	rical and Electronics Engineering	Program	nme: B. '	Гесh., (Е	E)					
Semester: Fifth		Subject	t Categor	y: PCC	Sei	nester E	Exam Type	e: TY		
Course Code	Course	Pe	riod / W	eek	Credit	Ma	aximum M	larks		
Course Code	Course	L	Т	Р	C	CA	SE	TM		
EEA117	Measurement and Instrumentation	3	-	-	3	25	75	100		
Prerequisite	-		I		I	I		<u> </u>		
Course Outcome	Course Or	utcome S	tatement				Lev	/el		
CO1	Describe the basic functional ele of measuring instruments and diff	ments of	f instrum or in mea	entation,	characte t.	ristics	Under	stand		
CO2	Analyse the suitable instrument	for me	asuring	different	and ma	gnetic	Anal	lyse		
CO3	Implement a suitable circuit capacitance, inductance values and	for m d magnet	easuring	unknov neters.	vn resis	tance,	App	oly		
CO4	Explain the construction and work and display devices and compare t	king prin them.	ciples of	various t	ypes of s	torage	Under	stand		
CO5	Apply the various types of transdublocks in data acquisition systems	Apply the various types of transducers and explain the function of different locks in data acquisition systems. Apply Introduction to Measurement Periods: 00								
UNIT-I	Introduction to Measurement					Ī	Periods:	09		
Elements of Gener	ralized measurement system- Metho	ods of m	easureme	ent- Class	ification	of instru	uments-			
Mean, Standard de	eviation- Probability of errors- prob	olems- Ty	pes of e	rror and r	emedial 1	neasure	s, Static	CO1		
& Dynamic chara	cteristics of instruments.									
UNIT-II	Electrical Measuring Instrumen	nts					Periods:	09		
Basic effects of electromechanical instruments-Ammeter and voltmeter-Moving coil-Moving Iron-										
Electro dynamo meter–Extension of range. Wattmeter–Dynamometer and induction type energy meter-										
Instrument transfo	rmers. Power factor meter– Synchr Pridges and Magnetic Measurer	oscope– mont	Frequen	cy meter.			Doriodau	00		
Measurement of a	resistance Low Medium and Hio	$\frac{1}{2}$ h AC 1	ridges	Maxwell	Hay's	and And	derson's	09		
bridge for inducta measurement of	ance. Desauty's bridge and Scherin frequency. B-H curve and hyster g wattmeter method	ng Bridg esis loop	e for Ca	pacitance ballistic	e and Wi galvanom	ien's brineter, an	idge for nd Loss	CO3		
UNIT-IV	Display and Recording Devices						Periods:	09		
LED & LCD Dist	blay. Dot Matrix Display. 7-Segme	nt Displa	v. Strip	Chart Red	corders. S	Single p	oint and	07		
multipoint Record	lers– X-Y Recorders-Magnetic Ta	pe Reco	rders-Da	ta Logge	rs– Elect	romagne	etic and	CO4		
Electrostatic inter	ference, Data Acquisition system.			00		U				
UNIT-V	Transducers						Periods:	09		
Temperature tra capacitive, LVDT meter – Strain gau	nsducers-RTD, thermistor, Th , Pressure transducer–Bourdon tube ges– Piezoelectric and Hall Effect t	ermocou e, Bellow transduce	ple-Disp /s–Flow er.	lacement transduce	Transc er– Electr	lucer-In omagne	ductive, etic flow	CO4		
Total Contact Ho	ours: 45 Tutorial Hours:00	Pra	ctical H	ours: 00	Γ	otal Ho	ours: 45			
Reference Book:										
 A.K. Sawhney, 2010. Arun K. Ghosh 	A course of Electrical & Electronic , Introduction to Measurements and	s Measu Instrum	rements entation,	& Instrun Prentice	nentation Hall of Ir	, Dhanp 1dia priv	vat Rai & s vate limite	ons, d,		
2012. 3. R.K. Rajput, El 4. John P. Bentley 5. G.S. Rangan, G 6. D.V.S. Moorthy	 2012. 3. R.K. Rajput, Electrical and Electronic Measurement and Instrumentation, S. Chand and Co. Pvt ltd,2016. 4. John P. Bentley, Principles of Measurement System, Addison Wesley Longman Pvt. Ltd., 2002. 5. G.S. Rangan, G.R. Sharma and V.S.V. Mani, Instrumentation Devices and Systems, Tata McGraw Hill, 2001. 6. D.V.S. Moorthy, Transducers & Instrumentation, Prentice Hall of India, 2008. 									

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												
CO1	3	1	1	-	-	-	-	-	-	-	-	1	2	1
CO2	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO3	3	3	1	1	-	-	-	-	-	-	-	1	2	1
CO4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												2	1
CO5	3 2 2 1												2	1
AV	3	2.2	1.4	0.8	-	-	-	-	-	-	-	1	2	1

Department: Elect	rical and Ele	ctronics Engineering	Progra	amme: B.	Гес <u>н., (</u> Е	E)				
Semester: Fifth			Subje	ct Categor	y: PCC	Se	mester E	xam Type	: TY	
Course Code		Course	P	Period / W	eek	Credit	Ma	ximum M	arks	
		Course	L	Т	Р	C	CA	SE	TM	
EEA118	TRANSM DISTRIBU	ISSION AND UTION	3	-	-	3	25	75	100	
Prerequisite	-			•		•				
Course Outcome		Course O	utcome	Statement				Lev	el	
CO1	Explain the parameters	ne importance and	the fu	nctioning	of trar	smissior	n line	Unders	stand	
CO2	Outline the lines	basics of corona, sag	and oth	ner probler	ms arise i	in transm	nission	Unders	stand	
CO3	Analyze m	echanical design of trai	nsmissio	on lines ar	nd insulat	ed cables	5.	Anal	yse	
CO4	Analyse the to improve	e voltage distribution is the same.	n insula	tor strings	and cab	les and n	nethod	Anal	yse	
CO5	Explain the improvement	ne various types of ent techniques.	distribu	ution syst	em and	power	factor	Unders	stand	
UNIT-I Tr	ansmission	Line Parameters						Periods:	09	
Structure of Power System - Parameters of single and three phase transmission lines -Resistance, inductance and capacitance of solid, stranded and bundled conductors, Symmetrical and unsymmetrical spacing and transposition – application of self and mutual GMD; skin and proximity effects -Typical configurations, conductor types and electrical parameters of EHV lines.										
UNIT-II Pe	rformance o	of Transmission Lines	& Cor	<u>rona</u>	1.	· 1	<u>,</u>	Periods:	09	
regulation, real ar Factors affecting of	ransmission ion constant nd reactive corona-Critic	, phase constant, surge power flow in lines - cal Voltages – Effect or	e imped Power Line P	lance - tra Circle di Performance	g line - e ansmissic agrams - ce.	on efficie Format	ency and ion of C	s, phasor voltage Corona –	CO2	
UNIT-III M	echanical Do	esign of Lines						Periods:	09	
Mechanical design of Wind and Ice lo efficiency, testing	n of OH line bading. Insul of insulators	s – Line Supports –Tyj ators: Types, voltage d s.	pes of to istributi	owers – St ion in insu	tress and lator strin	Sag Calo ng, impro	culation - ovement	- Effects of string	CO3	
UNIT-IV Un	derground	Cables						Periods:	09	
Underground cables - Types of cables – Construction of single core cable - Insulation Resistance – Potential Gradient - Capacitance of Single-core and 3 core cables - Grading of cable - Power factor and heating of cable. Testing of Cables.									CO4	
UNIT-V Dis	stribution S	ystems						Periods:	09	
Distribution Syste Concentrated, uni factor improveme (Qualitative treatment Total Content of	ems – Gener form and co ent – Recen- nent only).	ral Aspects –AC and I mbines loading - Kelv t trends in transmission	DC dist in's law on and	ributions v – Techni distributio	-Radial a iques of v on: EHV	and Ring voltage c AC, HV	main syon ontrol ar DC and	ystems – nd power FACTS	CO5	
1 otal Contact F	10urs: 45	i utoriai Hours: 0	U U	Practic	ai Hours	: 00	10	tai Hours	:43	

Reference Book:

1. D.P. Kothari, I.J. Nagarath, 'Power System Engineering', McGraw-Hill Publishing Company limited, New Delhi, Second Edition, 2008

2. C.L. Wadhwa, 'Electrical Power Systems', New Academic Science Ltd, 2009.

3. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2011.

4. V.K. Mehta, Rohit Mehta, 'Principles of power system', S. Chand & Company Ltd, New Delhi, 2013.

5. Luces M. Fualken berry, Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 2007

COs	Program Outcomes (POs)										Prog Spec Outc (PS	gram cific omes Os)		
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO												PSO2
CO1	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-
CO2	3	2 - - - - - - - 3 3 1 1 - - - - -												
CO3	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO4	2	1	-	1	-	-	-	-	-	-	-	1	2	-
CO5	3 1 - 1												2	-
AV	2.6	1.6	0.4	0.8	-	-	-	-	-	-	-	1	2	-

Department: Elect	rical and Ele	ectronics Engineering	Prog	ramme:	B. '	Tech., (E	E)				
Semester: Fifth			Subj	ect Cate	goi	ry: PCC	Se	emester]	Exam Type	e: TY	
Course Code				Period /	W	eek	Credit	M	aximum M	arks	
Course Code		Course	L	T		Р	C	CA	SE	TM	
EEA119	CONTRO	DL SYSTEMS	3	1		-	4	25	75	100	
Prerequisite	Vector alg	ebra and Matrix analysi	s; Lap	lace tran	nsfo	orm and F	ourier t	ransform	1.		
Course Outcome		Course Ou	utcome	e Statem	ent	,			Lev	el	
CO1	Develop m	nathematical models of e	electri	cal and 1	neo	chanical s	ystems		App	oly	
CO2	Estimate th	he time domain and freq	quency	domair	ı sp	ecificatio	ns		App	oly	
CO3	Analyze si	mple systems in frequen	ncy do	main.					Anal	yse	
CO4	Interpret c	haracteristics of the sys	stem to	o develo	p r	nathemat	ical mo	del and	App	oly	
	design ap	propriate compensate		the give	÷ i	specifica	uons.			1	
005	Solve com	plex control problemin	time d	lomain u	S11	ng state-sp	bace app	roach.	App	bly	
UNIT-I Int	roduction t	o Classical Control Th	leory						Perioc	ls: 12	
Introduction to Co	ntrol system	hs - Classical control th	eory c	oncepts	– I	inearity a	nd time	-invariai	nce (LTI)		
- Physics based n	nathematica	I modelling of dynamic	cal sys	stems (n	nec	hanical a	nd elect	trical system	stems) in		
transfer function a	pproach – p	ole-zero form and time	-const	ant form	1 -	concept c	of poles	and zero	os – open	~~ ~ ~ ~	
and closed loop co	and closed loop control systems. Analogous systems – force-current and force-voltage analogy. CO1										
Modelling of elect	ro-mechanie	cal systems (DC servo s	system	s with a	rma	ature and	field co	ntrol top	ologies).		
Simplification of	interconnec	ted systems using bloc	k diag	gram ree	luc	tion tech	nique a	nd Maso	on's gain		
formula (signal flo	ow graphs).										
UNIT-II Tir	ne-response	e Analysis	~		1				Perioc	ls: 12	
Standard test signals–Transient response analysis of first and second order systems using standard test											
signals (step, imp	oulse and ra	amp) –correlation betw	veen p	ole loca	itic	on in s-pl	lane and	1 time-r	esponse–	CO2	
transient response	specification	n for second-order syste	ems. St	teady sta	ite	analys1s–	error co	onstants.			
UNIT-III KO	ot Locus an	id Frequency Response	e Ana	lysis					Perioc	ls: 12	
Root locus concep	ts-construct	tion of root loci–root co	ntours	•		1	· 1				
Frequency respon	se analysis:	Frequency response a	and its	s import	and	ce–correla	ation be	tween I	requency	CO3	
response and time	-response ar	alysis-frequency responses	nse sp		ons	s. Frequer	icy resp	onse plo	ts– Polar		
plot, Bode plot and	a log-magni	tude versus phase plot.	All pas	ss and m	1111	mum pha	se syste	ms.		10	
UNIT-IV Sta	idlifty of Dy	namic Systems	-1.:1:4			1-4:	:1:4	1:-	Perioc	IS: 12	
stability criterion	of L II syste	ms-Kouth and Hurwitz st	abinty	criteria -	- re	elative stat	onity ana	lysis usir	ig Routh s		
Stability analysis in	frequency d	omain–Nyquist stability c	riterio	n_ Relati	ve	stability a	nalvsis c	f dynam	ic systems	CO4	
using phase margin	and gain mar	rgin specifications– Close	d-loop	frequenc	v r	esponse –	constant	M and M	N circles –		
Nichols chart (qualit	tative treatme	ent only).	r		5 -	r					
UNIT-V Sta	te-space A	pproach for Modelling	Dyna	mic Sys	ter	ns			Period	ls: 12	
Modelling of phy	sical system	ns using state-space ap	proach	1 – adva	anta	ages of s	tate-spa	ce appro	oach over		
transfer function	approach. S	tate-space model using	, physi	ical vari	ab	le approa	ch for S	SISO [°] an	d MIMO		
systems, and phas	e variable a	nd canonical variable a	pproac	ches for	SI	SO syster	ns. Deri	vation o	f transfer		
functions from sta	te-space mo	del for LTI systems.				-				CO6	
Solution to state	equation-h	omogenous system an	d for	ced syst	em	n– state t	ransitio	n matrix	x and its		
properties- ascerta	aining stabil	lity from eigen values of	of the	system 1	ma	trix. Intro	duction	to contra	rollability		
and observability.	-	-		·					-		
Total Contact H	Total Contact Hours: 45 Tutorial Hours:15 Practical Hours: 00 Total Hours:60										

Reference Book:

1. Katsuhiko Ogata, "Modern Control Engineering", Fifth Edition, Prentice Hall, 2010.

- 2. I J Nagrath and M. Gopal, "Control Systems Engineering", New Age International (P) Limited, 2008.
- 3. Norman S Nise, "Control Systems Engineering", 7th Edition, Wiley, 2015.
- 4. Gene F. Franklin, J. David Powell and Abbas Emami-Naeini, "Feedback Control of Dynamic Systems", 8th Edition, Pearson, 2018.
- 5. Joseph J. Distefano, III, Allen R. Stubberud and Ivan J. Williams, 'Feedback and Control Systems'', Schaum's
- Outlines, Second Edition, Tata-McGraw Hill Edition, 2003.
- 6. Raymod T. Stefani, Bahram Shahian, Clement J. Savant, Jr. and Gene H. Hostetter, "Design of Feedback Control Systems", Oxford University Press, 2004

COs		Program Outcomes (POs)												
	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO2
CO1	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO2	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO3	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO4	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO5	3	3 3 2 1 1											2	1
AV	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1

Department: Hum Man	anities Social Science and	Programme: B.Tech., (EE)										
Semester: Fifth		Subject	t Categor	v: PCC	Ser	nester F	Exam Type	e: TY				
~ ~ ~ 1	~	Pe	eriod / W	eek	Credit	Ma	aximum M	arks				
Course Code	Course	L	Т	P	C	CA	SE	TM				
HSA102	Industrial Economics and Management	3	-	-	3	25	75	100				
Prerequisite	-											
Course Outcome	Course O	utcome S	tatement				Lev	'el				
CO1	Outline the industrial micro econ	omics/m	acroecon	omics.			Under	stand				
CO2	Explain various management tech	iniques b	ased on t	he needs.			Under	stand				
CO3	Explain various investment evalu	ation bas	sed on the	e needs			Under	stand				
CO4	Explain the steps in production, p	rocess pl	anning, s	cheduling	g and des	patch.	Under	stand				
CO5	CO5 Discuss the various marketing strategy. Understand											
UNIT-I Micro And Macro Economics and Its Applications Periods: 09												
Nature and Scope of Economic science: Micro – Macro Economics, Economic decisions and Technical												
decisions. Demand and Supply concepts: Types of Demand. Determinants of Demand and Supply.												
concept of Equilibrium. Elasticity of Demand, cost components. Concepts of ISO-Quant – Break Even												
Analysis – Market	t structure – Price of Product Natur	e of pric	ing in di	fferent ty	pes of co	mpetitio	on Small	CO1				
Scale Industries – Role of SSI in Indian Economy.												
Macro Economics: Nature and functions of Money – National Income – GNP and Savings – Inflation												
and Deflation concept – Business Cycle – Foreign Trade and Balance of payment.												
UNIT-II Ma	nagement Techniques						Periods:	09				
Types and Princip	ples of Management – Elements	of Mana	gement -	– Planniı	ng, Organ	nising,	Staffing,					
Directing, Coordi	nating Controlling - Scope of M	lanageme	ent – Ty	pes of (Organizat	ion Me	erits and	CO2				
Demerits – Types	of (Ownership) of a firm Merits and	d Demeri	its.	-	-							
UNIT-III Inc	lustrial Finance						Periods:	09				
Need for Finance	- Types of finance - Sources o	of finance	e – Type	es of Inv	estment -	– Evalu	uation of					
Investment – Prep	paration of Trading, Profit and loss	Accoun	t and Ba	lance She	eet – type	es of ac	counting	CO3				
and significance of	f each type.						_					
UNIT-IV Pro	oduction Management						Periods:	09				
Theory of Product	ion Function – Types of Production	n Merits	and Dem	erits – Pr	ocess Pla	nning –	- Routing					
– Scheduling – M	aterial Control Concepts of Produ	ctivity –	Measure	ement of	Productiv	vity – Iı	nspection	CO4				
and Dispatches.	-					-	-					
UNIT-V Ma	arketing Management						Periods:	09				
Core Concepts of	Marketing - Needs – Wants – Dema	and, Mar	keting V	s Selling	- Produc	ts and N	Markets –					
Pricing and relate	d factors - Channels of Distribution	on – Pro	motion A	Advertisir	ng – Marl	ket Res	earch Vs	CO5				
Marketing Researc	ch				0							
Total Contact H	lours: 45 Tutorial Hours:00	0	Practica	al Hours:	: 00	То	tal Hours	:45				
Reference Book:		•			•							
1. Varshney Mahe	eswari "Managerial Economics" S (Chand &	Co, New	Delhi 20)11							
2. Dutt & Sundara	um, "Indian Economy" S Chand & (Co New I	Delhi 201	15								
3. Pandey I.M, "E	lements of Financial Management"	Wiley E	astern Lt	d New D	elhi 2015							
4. H.L. Ahuja, "M	4. H.L. Ahuja, "Macro Economics for Business and Management, S Chand & Company Ltd 2011											

5. O.P Khanna, "Industrial Engineering and Management, DhanpatRai and Sons, 2009.
6. Philip B Kotler, "Marketing Management, Mac Millan, New York 2011.

COs		Program Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	3	-	-	-
CO2	-	<u> 3 -</u>									-	-		
CO3	-	-	-	-	-	-	-	-	-	-	3	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	3	-	-	-
CO5	-	3 -											-	-
AV	-	-	-	-	-	-	-	-	-	-	3	-	-	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)										
Semester: Fifth	-	Subject	t Categor	y: PCC	Ser	nester E	Exam Type	e: LB		
Course Code	Course	Pe	riod / W	eek	Credit	Ma	ximum M	larks		
	Course	L	Т	Р	С	CA	SE	TM		
EEA120	Electronics Laboratory-III	-	-	3	1.5	25	75	100		
Prerequisite	Analog Electronics Course and Digital ICs (Fifth Semester).	Pulse an	nd Digita	al Course	e (Fourth	Semes	ter), Ana	log and		
Course Outcome	Course O	utcome S	tatement				Lev	/el		
CO1	Design and implement the el inverting, non-inverting amplifier subtractor, and difference amp integrator and differentiator circu	ementary r, voltage lifier cir its using	or OPAM follower cuits. D OPAMP.	IP based r (buffer) esign an	circuits , analog d test a	s like adder, malog	Арр	ply		
CO2	CO2 Construct and test the operation of little advanced OPAMP based circuits Apply like logarithmic and antilog amplifier, precision rectifiers and DACs.									
CO3	Design and verify the frequent second order active filter circl oscillator circuits using OPAMP.	cy respo uits. Des	nse char sign and	acteristic test the	s of firs operati	at and on of	App	oly		
CO4	Design instrumentation amplifier, comparator circuits and Schmitt trigger using OPAMP. Design and verify the operation of Monostable and Astable circuits using general purpose timer IC 555.									
CO5	Design and implement VCO, O ICs.	ptocoutp	ler and `	Voltage 1	regulator	using	App	ply		
Any 10 Experime	ents									
1. Inverting and N	on-Inverting Amplifier using IC 74	41								
2. Analog Adder,	Subtractor and Difference Amplific	er using I	C 741.					CO1		
3. Integrator and I	Differentiator using IC 741.									
4. Log and Antilo	g amplifier circuits using IC741.									
5. Precision rectifi	iers using IC741.							CO2		
6. Digital to Analo	og Converter circuits using IC 741.									
7. Active filter cir	cuits using IC/41.							GO1		
8. Wein-bridge os	cillator using IC/41.							CO3		
9. RC Phase-shift	oscillator using IC/41.									
10. Instrumentation amplifier using IC /41.										
12 Monostable ar	a Seminu urgger using IC /41.							004		
13. Voltage Contr	oller Oscillator (VCO) using Phase	-locked 1	oon IC N	E 565						
14. Optocoupler I	C 6N137 based driver circuit	i lockeu l		L 000.				CO5		
15. Voltage regula	ator using IC723.									
Total Contact He	ours: 00 Tutorial Hours:00		Practical	Hours:	45	Tot	al Hours:	45		

COs		Program Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	2	-	-	-	2	-	-	1	2	2
CO2	3	3	2	1	2	-	-	-	2	-	-	1	2	2
CO3	3	3	2	1	2	-	-	-	2	-	-	1	2	2
CO4	3	3	2	1	2	-	-	-	2	-	-	1	2	2
CO5	3	3	2	1	2	-	-	-	2	-	-	1	2	2
AV	3	3	2	1	2	_	_	_	2	_	_	1	2	2

Department: Elect	rical and H	Electronics Engineering	Program	nme: B.	Гесh., (Е	E)					
Semester: Fifth			Subject	t Categor	y: PCC	Ser	nester I	Exam Type	e: LB		
Comme Co. 1a		C	Pe	riod / W	eek	Credit	Ma	aximum M	larks		
Course Code		Course	L	Т	Р	С	CA	SE	TM		
EE A 171	Measur	ement and Control			2	1.5	25	75	100		
	Laborat	tory	-	-	5	1.5	23	15	100		
Prerequisite	Analog l	Electronics course, Signal	and Sys	tems cou	rse and C	ontrol Sy	stem co	ourse.			
Course Outcome		Course O	utcome S	tatement				Lev	vel		
<u>CO1</u>	Measure	various electrical and Ma	agnetic q	uantities	using var	rious brid	ges.	Арр	əly		
CO2	Calibrate	e the energy meter and ex	tend the	range of	voltmeter	and amr	neter.	Арр	əly		
CO3	Identify	suitable transducer for me	easureme	nt of phy	sical qua	ntities.		App	ply		
CO4	Analyse system in	the properties of signa n classical approach (Trar	ls and substantiation of the second s	systems; ction app	to analy roach).	ze a dy	namic	Anal	lyse		
CO6	Analyze (block di	a dynamic system in sta agrammatic) approach fo	ate-space r analyzi	approac	h and to amic syst	use sche em.	ematic	Anal	lyse		
Any 10 Experime	Experiments										
1. Measurement o	Measurement of medium resistance using bridge										
2. Determination of Hysteresis loop using Transformer core.											
3. Calibration of single phase/three phase energy meter.											
4. Experiment on extending the range of Voltmeter and voltmeter by multiplier and shunt.											
5. Measurement of Temperature using Transducer.											
6. Measurement of Displacement using Transducer.											
7. Determination	of the char	acteristics of Instrumenta	tion amp	lifier.							
8. Time-response	and frequ	ency response analysis of	f first-or	der and s	second-or	der syste	ms. Co	rrelation			
between time resp	ponse and	frequency response spec	ification	of stand	lard seco	nd order	system	. Steady			
state analysis – co	mputation	of error criteria and stead	ly state e	rror for t	ype -0, -1	_					
and -2 systems.											
9. Analysis of dyn	amic syste	ems using root-locus. Des	sign of co	ontroller	using roo	t locus m	ethod. S	Study of	CO4		
Root contours.	· · ·		·	1 1 .	Q. 1	0.1					
10. Analysis of dy	namic sys	tems in frequency domain	n using E	sode plot	. Study of	t the impa	act of				
compensator c	n closed-l	oop performance – tracki	$\frac{\text{ng and d}}{(1)}$	isturbanc	e rejectio	on.	· (* 1				
11. Design of PID	controlle	r and its variant (I-PD con	itrol) for	a DC mc	otor system	m for a sp	pecified				
closed-loop pe	alaria	e using root locus and pol	e-placen	tent appr	oacn.		4-4				
12. State-space an	Solution	to state equation	lion in al	i three ca	monical i	orms of s	tate-spa	ice			
13 Modelling and	l opolycic	of Machanical (translation	nol and re	tational	avetome)	and Floo	trical a	istoma			
13. Modelling and analysis of Mechanical (translational and rotational systems) and Electrical Systems (Electrical Circuits, DC Motor, armature and field control and state space averaging method for											
nower electror	vic conver	ter circuits $-$ buck boost	etc) usin	and stat	al and/or	modern a	nnroac	hes	CO5		
14 Stability of no	nlinear sv	stems using phase-plane r	plots base	ed on Ly	anunov ei	nerov fiin	ction	1105.	005		
approach. Stud	ly of Limi	t Cycles using Van der Po	ol's nonli	near svs	tem.	ieigy iun	C 1011				
15. Dynamic analy	vsis of one	en-loop power electronic	converter	· circuits	(buck, bo	ost and h	uck-bo	ost)			
using SIMULINK.											
Total Contact H	ours: 00	Tutorial Hours:00]	Practical	Hours:	45	Tot	al Hours:	:45		

COs		Program Outcomes (POs)												
	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO2
CO1	3	3	1	3	3	-	-	-	1	-	-	1	2	1
CO2	3	3	1	3	3	-	-	-	1	-	-	1	2	1
CO3	3	3	1	3	3	-	-	-	1	-	-	1	2	1
CO4	3	3	1	3	3	-	-	-	1	-	-	1	2	1
CO5	3	3 3 1 3 3 1 - 1											2	1
AV	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1

VI SEMESTER

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)										
Semester:Sixth	<u> </u>	Subject	Categor	y: PCC	Ser	nester l	Exam Typ	e: TY		
Course Code	Course	Pe	riod / W	eek	Credit	M	aximum N	larks		
Course Code	Course	L	Т	Р	С	CA	SE	TM		
EEA122	Power System Analysis	3	1	-	4	25	75	100		
Prerequisite	-									
Course Outcome	Course Or	utcome S	tatement				Lev	vel		
CO1	Model the Power System compor transformer, shunt element, and lo	nents inc ad.	luding g	enerator,	line/cable	e, and	Ana	lyse		
CO2	Distinguish between different met	hods of p	ower flo	ow analys	is		Ana	lyse		
CO3	Analyze the symmetrical compo sequence network.	nents us	ing posi	tive, neg	ative and	l zero	Ana	lyse		
CO4	Analyze the nature of the system u	under var	ious faul	lt condition	ons.		Ana	lyse		
CO5	Analyze the stability of power sys	tem usin	g differe	nt metho	ls.		Ana	lyse		
UNIT-I	Modelling of Power Systems Co	mponen	ts				Periods:	12		
Need for system planning and operational studies – single line diagram of power system components – per unit quantities – reactance diagram - Bus admittance matrix – Bus impedance matrix representation.										
UNIT-II Load Flow Studies Periods: 12										
Bus Classification - Formulation of load flow equations using Gauss-Seidel, Newton-Raphson and Fast										
Decoupled method for the computation of slack bus power - line voltages, line losses and real and C										
reactive powers tr	ansmitted through the line - Compa	rison of t	he above	e methods	5.					
UNIT-III	Symmetrical Components						Periods:	12		
Introduction of sy	ymmetrical components - Transfor	mation n	natrices	used in r	resolution	of unl	balanced			
voltages and curre	ents- Positive, Negative and Zero se	quence n	etworks	of power	system c	compon	ents like	CO3		
synchronous mach	nines, induction machines, transform	ners, tran	smissior	lines, lo	ads.					
UNIT-IV	Symmetrical and Unsymmetrica	al Fault A	Analysis				Periods:	12		
Symmetrical fault	analysis - analysis through impeda	nce matri	ix - circu	it breake	r rating -	current	limiting	~~ .		
reactors. Unsymm	netrical fault analysis - LG, LL,	LLG an	d open	circuit fa	ults – a	nalysis	through	CO4		
sequence compon	ents							1.		
UNIT-V	Power System stability			~			Periods:	12		
Stability studies -	steady state and transient stability	y - Powe	er Angle	Curve -	swing eq	uation	– Swing	GO .		
Curve –solution o	If swing equation by step by step m	ethod -eo	qual area	criterion	- critica	l clearn	ng angle	C05		
and clearing time			· · · ·	TT	0.0	T	. 1 11	()		
Total Contact Hours: 45 Tutorial Hours: 15 Practical Hours: 00 Total Hours: 60										
Keterence Book:										
1. Jonn J. Grainger & Stevenson. W.D., "Power System Analysis", McGraw Hill International editions, 1994.										
2. Haul Saauai, F	I Nagrath "Modern Power System	aw-miii,	2002. s" Tata	McGraw	Hill 1th	edition	2011			
4 Duncan Glover	I Mulukutla S Sarma & Thomas	I Anarysi I Averby	s, rata	r System	Analysia	and D	esion" Ca	ngage		
Learning 4th edit	tion 2008			a bystem	¹ 1101 y 515	, and D	congin , CC	nguge		
5 Arthur R Berge	en and Vijav Vittal "Power System	Analysis	". 3rd F	dition PF	III] Priva	ite Limi	ited New	Delhi		
2001.			, 21 4 D					,		

COs		Program Outcomes (POs)												
	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												PSO2
CO1	3	2	2	1	-	-	-	-	-	-	-	1	1	-
CO2	3	3	2	1	-	-	-	-	-	-	-	1	1	-
CO3	3	3	2	1	-	-	-	-	-	-	-	1	1	-
CO4	3	3	2	1	-	-	-	-	-	-	-	1	1	-
CO5	3	3 3 2 1 1											1	-
AV	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-

Department. Elect	rical and Electronics Engineering	Program	mme: B .	Tech., (E	E)						
Semester:Sixth	<u> </u>	Subject	t Categoi	ry: PCC	Sei	nester I	Exam Type	e: TY			
0 0 1	G	Pe	eriod / W	eek	Credit	Ma	aximum M	larks			
Course Code	Course	L	Т	Р	С	CA	SE	TM			
EEA123	Microprocessors and Microcontrollers	3	-	-	3	25	75	100			
Prerequisite	Basic Electrical Engineering, Lap	lace Trar	sform	1	I	I		I			
Course Outcome	Course Or	utcome S	tatement				Lev	vel			
C01	Outline the architecture descrip addressing modes of 8085	ption, so	oftware	instructio	ns & v	arious	Under	stand			
CO2	Make use of instruction sets and programs for any given application	develop ns using	skill in a 8085 pro	assembly ocessor.	level lan	guage	Арј	ply			
CO3	Design the interfacing of Peripher	al Devic	es with 8	3085 Proc	essor.		Cre	ate			
CO4	Develop programming of 8051 mi	icrocontr	oller bas	ed on its	architectu	ıre.	Ap	ply			
CO5	Design and Implement the interfa devices with 8051.	acing sch	neme for	memory	and peri	pheral	Cre	ate			
UNIT-I Introduction to Microprocessors and Microcontrollers Periods: 09											
Fundamentals of Microprocessor: Block diagram, general building blocks- Register section, Arithmetic and Logic unit, Timing and Control unit and Interface section- features concepts common to all microprocessors. Comparison of 8 bit processors: 8085, Z80 and 6800. Microcontroller- general building blocks - features. Comparison of microprocessors and microcontrollers. Overview of the 8051 family.											
UNIT-IIMicroprocessor Instruction Set and ProgrammingPeriods: 0											
Instruction set of Condition flags- 7 bit binary/BCD n Software develop	of 8085-Addressing modes- Direct Timing Diagrams -Programming tect umbers, Counters and time delay p ment systems and assemblers. Memo	ct, Indiro chniques- programs ory and I	ect, Imn – Arithm –Stack a I/O interl	nediate a letic and l nd subrou facing	nd regis ogic ope itines -Co	ter add rations ode cor	dressing. on 8/16- oversion.	CO2			
UNIT-III	Interrupts, Communication and	Periphe	eral ICs				Periods:	09			
Interrupt structur communication. Peripheral ICs (B Timer/ Counter (controller (8259) interfacing, and tr	e of 8085 microprocessor - inte lock diagram, features and interfact (8253), Programmable keyboard d - Serial communication USART (affic lights.	errupt ro ing only isplay in 8259). In	outines,)-Program nterfaces nterfacin	Data tran mmable F (8279). g Data co	nsfer tec Peripheral Program onverters	hniques l device mable i , steppe	- Serial (8255), interrupt er motor	CO3			
UNIT-IV	The 8051 Microcontroller- Arch	itecture	& Prog	ramming	5		Periods:	09			
 Block Diagram of 8051 Microcontroller -CPU, Oscillator, Program memory, Data memory, Stack Pointer, Special Function Registers, I/O ports. Addressing modes- Immediate, Register, Direct, Indirect, Relative and Indexed addressing, bit inherent addressing, bit direct addressing, PUSH and POP instructions. Logical operators-bit and byte level, bit level Boolean operators, Rotate and swap, Example programs. Arithmetic operations- addition, subtraction, multiplication, division, Decimal Arithmetic, searching and sorting. Jump and Call 											
UNIT-V	Microcontroller Based Design						Periods:	09			
External Memory Tables. Serial dat standards RS232,	and memory space decoding, T a transmission, reception- polling a SPI, I2C. Introduction to protocols	esting th and Inter like Blue	ne design rupt driv e-tooth an	n- Timin ven mode nd Zig-be	g subrou s. Serial e.	tines, I commu	Look up inication	CO5			
Reference Book:

1. Ramesh Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, Sixth Edition 2013.

2. K. J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.

3. D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, Second Edition, 1991.

4. Kenneth L. Short, "Microprocessor and Programming Logic", 2nd Edition, Prentice Hall, 1987.

5. Mathur A P, "Introduction to Microprocessors", 24th Reprint, TMH, New Delhi , 2006.

6. N.Senthil Kumar, M.Saravanan and S.Jeevananthan, "Microprocessors and Microcontrollers", 2nd Edition,

Oxford University Press.

COs					Prog	ram Out	comes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO												PSO2
CO1	3	2	2	2	2	1	-	-	2	-	-	1	2	2
CO2	3	3	3	2	3	1	-	-	2	-	-	1	2	2
CO3	3	3	2	2	2	1	-	-	2	-	-	2	2	2
CO4	3	2	3	3	3	1	-	-	2	-	-	1	2	2
CO5	3	3 3 3 3 1 - 2 - 2											2	2
AV	3	2.6	2.6	2.4	2.6	1	-	-	2	-	-	1.4	2	2

Department: IED	С	Program	nme: B.	Гесh., (Е	E)							
Semester: Sixth		Subject	Categor	y: PAC	Ser	nester E	xam Typ	e: TY				
Caura Cada	Course	Pe	riod / W	eek	Credit	Ma	ximum N	larks				
Course Code	Course	L	Т	Р	C	CA	SE	TM				
EPA101	Entrepreneurship	3	-	-	3	25	75	100				
Prerequisite	-											
Course Outcome	Course C	Outcome S	Statemen	t			Le	evel				
CO1	Outline the basics of Entrepreneur	rship and	design t	hinking.			Unde	rstand				
CO2	Extend the knowledgeable to build	d busines	s model	and MVI	2		Cr	eate				
CO3	Outline the costing and revenue.						Ap	oply				
CO4	Outline about marketing and sales	5.					Ana	alyse				
CO5	Explain about team formation and	l complia	nce requ	irements.			Rem	ember				
UNIT-I	Problem and Customer						Period	s: 09				
Effectuation, Find	ling the flow. Entrepreneurial styl	le, busine	ess oppo	rtunity, j	oroblems	worth s	solving,					
methods for finding	ng problems, problem interviews.	Design T	hinking,	Consum	er and cu	istomer,	market	CO1				
types, segmentati	on and targeting, early adopters	s, Gains,	Pains	and "Joł	os-To be	done",	Value	COI				
Proposition Canva	as (VPC), Identifying Unique Value	e Proposit	tion (UV	P).								
UNIT-II	Business Model and Validation						Periods:	09				
Types of Business	s Models, Lean Canvas, Risks. Bui	lding sol	ution der	no, solut	ion interv	views, p	roblem-					
solution test, competition, Blue Ocean Strategy. MVP- Build-Measure-Learn feedback loop, MVP CO2												
Interviews, MVP	Presentation.											
UNIT-IIIRevenue and CostPeriods: 09												
Revenue Streams	-Income, costs, gross and net ma	rgins - j	orimary	and seco	ondary re	venue s	streams-					
Different pricing s	strategies - product costs and Opera	ations co	sts; Basio	es of unit	costing.	Financi	ng New	CO3				
Venture- various s	sources - investor expectation- Pitch	ning to In	vestors.									
UNIT-IV	Marketing and Sales						Periods:	09				
Difference betwee	en product and brand - positioning	statement	. Buildir	ng Digital	l Presence	e, social	media-	~~ (
company profile	page –Sales Planning - buying dec	cisions, L	Istening	skills, ai	nd targets	s. Uniqu	ie Sales	CO4				
Proposition (USP)	, sales pitch, Follow-up and closing	g a sale.										
UNIT-V	Team and Support		<i>c</i> 1	<i>a</i> ·			Periods:	09				
Team Building - S	shared leadership - role of a good to	eam - tea	m fit - de	efining ro	bles and r	esponsit	oilities -	GO .				
collaboration tool	s and techniques-project manager	nent, tim	e manag	gement, v	workflow	, delega	ation of	C05				
tasks. Business reg	asks. Business regulations - starting and operating a business - compliance requirements.											
Iotal Contact Hours: 45 Iutorial Hours: 00 Practical Hours: 00 Iotal Hours: 45												
1. Nondon II. "Evendomentale of Entropyonovychin". Drontice Hell India, 2012												
1. Nandan H, "Fui	1. Nandan H, Fundamentals of Entrepreneurship, Prentice Hall India, 2013. 2. LearnWISE_Digital learning platform by Wadhwani Foundation, www.learnwise.org											
2. Learn WISE-DI	gital learning platform by wadhwa	ni Found	ation, wv	ww.iearn	wise.org							
J. Knanka S.S. "E	"Entropronourship Development", S Ch		tion IInt	2007. India 20	17							
4. Sangeeina Shar	"Entropronourship Developmen	n - Pren	Dublich	$\frac{1101a}{2002}$	1/.							
3. Anii Kumar.S,	Entrepreneursnip Development"-	inew Age	rudiish	ers, 2003	•							

5. Anil Kumar.S, "Entrepreneurship Development"- New Age Publishers, 2003.

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO2
CO1	1	1	2	3	1	2	1	-	-	2	2	-	-	-
CO2	2	3	1	3	1	1	1	-	1	2	2	-	-	-
CO3	1	-	2	2	-	2	1	-	1	2	-	-	-	-
CO4	-	-	2	3	-	2	3	2	1	3	1	-	-	-
CO5	-	- 2 - 2 - 3 2 2 2											-	-
AV	0.8	1.2	1.4	2.6	0.4	2	1.2	0.4	0.6	2.2	1.4	0.4	-	-

Department: Elec	trical and E	lectronics Engineering	Progra	mme: B	.Tech.,	(EE)			
Semester: Sixth			Subjec	t Catego	ory: PCC	5	Semeste	r Exam	Type: LB
Course Code		Course	Pe	riod / W	eek	Credit	Max	kimum N	√larks
Course Code		Course	L	Т	Р	C	CA	SE	TM
FFA17/	Micropro	cessors and			3	1.5	25	75	100
EEA124	Microcon	trollers Laboratory	-	-	5	1.5	23	15	100
Prerequisite	-								
Course Outcome		Course O	utcome	Statemer	nt			I	Level
CO1	Develop p instruction	programming of 8085 m 1 set.	icroproc	essor ba	sed on i	ts archited	cture and	Und	lerstand
GOA	Develop p	programming of 8051 m	icrocont	roller ba	sed on i	ts archited	ture and		
CO2	instruction	n set.						Und	lerstand
<u> </u>	Design ar	nd Implement the Perip	pheral I	Devices	interface	e with 80	085/8051	TT. J	1
COS	hardware	components						Und	lerstand
Any 10 experime	ents:								
I: 8085 Micropr	ocessor bas	ed experiments:							
1. Binary arithme	tic operatio	ns (8/16-bit)							
2. BCD arithmeti	c operations	5.							
3. Block operatio	ns								CO1
4. Generation of	Series(Fibor	nacci, prime)							COI
5. Message Displ	ay (Moving	; &Flashing).							
6. Digital clock S	imulation u	sing counters/interrupts.							
II. 8051 Microco	ontroller ba	sed experiments:							
7. Arithmetic ope	erations								
8. Code conversion	ons								CO2
9. Array operation	ns (searchin	g, sorting)							
III: Interfacing	<u>experiment</u>	<u>s (8085/8051 based):</u>							
10. Traffic light i	nterface.								
11. Display Intert	face.								CO3
12. Stepper motor	r interface.								
Total Contact H	Iours: 00	Tutorial Hours:00	I	Practical	Hours	: 45	Tota	l Hours	:45

COs					Prog	ram Out	tcomes ((POs)					Prog Spe Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	2	-	-	-	1	-	-	1	3	1
CO2	3	2	1	2	2	-	-	-	1	-	-	1	3	1
CO3	3	2	1	2	2	-	-	-	1	-	-	1	3	1
AV	3	2	1	2	2	-	-	-	1	-	-	1	3	1

Department: Elect	rical and I	Electronics Engineering	Program	nme: B. '	Гесh., (Е	E)					
Semester: Sixth			Subject	: Categoi	y: PCC	Ser	nester E	xam Typ	e: LB		
Course Code		Course	Pe	riod / W	eek	Credit	Ma	ximum M	[arks		
Course Code		Course	L	Т	Р	C	CA	SE	TM		
EEA125	Power E	Electronics Laboratory	-	-	3	1.5	25	75	100		
Prerequisite	-										
Course Outcome		Course O	utcome S	tatement				Lev	/el		
CO1	Demons circuits.	trate the characteristics of	f power s	emicond	luctor dev	vices and	firing	Under	stand		
CO2	Analyse	commutation techniques	and DC-	DC conv	erters.			Anal	lyse		
CO3	Correlate converte	e theoretical and practic rs.	al result	s of AC	C-DC, A	C-AC, D	C-AC	Eval	uate		
CO4	Develop these con	analytical competence r	equired f	for mode	elling and	l simulati	on of	Cre	ate		
CO5	Outline	he application of convert	ers for m	otors &	SMPS.			App	oly		
Any 10 experime	nts:										
1. Study of Switch	1. Study of Switching characteristics of SCR, MOSFET and IGBT										
2. Study of RC an	d UJT Tri	ggering circuits for SCR							COI		
3. Study of voltag	e commut	ated chopper							CO^2		
4. Study of curren	t commuta	ated chopper							002		
5. Experimental v	erification	of Single-phase semi-con	iverter w	ith R and	d RL load	ls					
6. Experimental v	erification	of Single-Phase Full con	verter wi	th R and	RL load	S					
7. Study of Three-	phase Ser	ni converter with R and R	L loads						CO3		
8. Study of Three	phase Ful	I converter with R and RI	loads	11 .	1 D 1 I	NT 1 1					
9. Experimental v	erification	of single-phase AC Volt	age contr	oller wit	h K and I	CL loads					
10.Study of single	-pnase vs	SI with different modulati	on techni	ques							
11. Simulation stu	dy of thre	e-phase VSI under 120 ar	1 <u>a 180 ae</u>	grees of	operation	1					
12. Simulation study of single-phase senti and full converters CC											
15. Simulation stu	dy of thre	e phase semi and full con	verters								
14. Simulation stu	of DC mo	tor using Rectifier									
16 Speed control	of inducti	on motor using Voltage s	ource inv	erters					CO5		
17 Study of swite	hed mode	nower supplies		011015					005		
Total Contact He	ours: 00	Tutorial Hours:00	I	Practical	Hours:	45	Tota	al Hours:	45		

COs					Prog	ram Ou	tcomes ((POs)					Prog Spe Outc (PS	gram cific omes Os)
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO2
CO1	2	3	3	3	2	-	1	-	-	1	3	1	3	2
CO2	2	3	3	3	2	-	1	-	-	1	3	1	3	2
CO3	2	3	3	3	2	-	1	-	-	1	3	1	3	2
CO4	2	3	3	3	2	-	1	-	-	1	3	1	3	2
CO5	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											3	2
AV	2	3	3	3	2	-	1	-	-	1	3	1	3	2

Department: Hum	nanities an	d Social Sciences	Progra	nme: B.]	Гесh., (Е	E)			
Semester:Sixth			Subject	t Categor	y: MCC	Ser	nester Ez	кат Тур	e: -
Common Con 1a		C	Pe	riod / W	eek	Credit	Max	kimum M	larks
Course Code		Course	L	Т	Р	C	CA	SE	TM
CTLA 102	Essence	of Indian Traditional	2						
SHAIUS	Knowled	lge	3	-	-	-	-	-	-
Prerequisite	-								
Course Outcome		Course O	utcome S	tatement				Lev	vel
COI	Understa	nd the basics of Indian t	raditional	knowled	dge in mo	odern scie	entific	Under	etand
COI	perspecti	ve						Under	stanu
UNIT-I							Per	iods: 23	
Basic structure of	f Indian kn	nowledge system, Moder	n science	e and Ind	lian knov	vledge sy	stem, Yo	oga	CO1
and holistic health care.									COI
UNIT-II							Per	iods: 22	
Philosophical trac	lition, Indi	an linguistic tradition, In	dian artis	tic tradit	ion.				CO1
Total Contact H	ours: 45	Tutorial Hours:00]	Practical	l Hours:	00	Tota	l Hours	:45
Reference Book:									
1. N. Sivaramak	crishnan (E	Ed.) Culteral Heritage of	India –	Course 1	Materal,	Bharatiya	VidyaBl	navan, M	lumbai
5th									
edition, 2014.									
2. Swami Jitatma	anand, Mo	dern Physics and Vedant	a, Bharat	iyaVidya	aBhavan.				
3. Fritzof Capra,	Tao of Ph	ysics.							
4. Yoga Sutra of	Patanjali,	Ramakrishna Mission, K	lolkatta.						
5. R.N. Jha, Scie	ence of Cor	nciousness Psychotherap	y and yog	ga Practio	ces, Vidy	anidhiPra	ıkashan,	Delhi 20	16.
6. S.C Chaterjee	and D.M I	Datta, An Introduction to	Indian F	hilosoph	y, Unive	rsity of C	alcutta, 1	1984.	
7. Krishna Chait	anya, Arts	of India, Abhinav Public	cations, 1	987					

COs					Prog	ram Out	tcomes ((POs)					Prog Spe Outc (PS	gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AV	-	-	-	-	-	-	-	-	-	-	-	-	-	-

VII SEMESTER

Department: Elect	rical and H	Electronics Engineering	Program	mme: B. '	Tech., (E	E)			
Semester: Sevent	h		Subject	t Categoi	y: PCC	Ser	nester I	Exam Type	e: TY
0 0 1		C	Pe	riod / W	eek	Credit	Ma	aximum M	larks
Course Code		Course	L	Т	Р	С	CA	SE	TM
	Power S	System Operation				2	25		100
EEA126	and Co	ntrol	3	-	-	3	25	75	100
Prerequisite				I				1	
Course Outcome		Course Or	utcome S	tatement				Lev	vel
CO1	Explain	the significance of monito	oring and	control	of a powe	er system.		Under	stand
CO2	Explaini	ng load forecast and unit	commitn	nent on p	ower syst	tem.		Under	stand
CO3	Explain	the modeling and analysis	s of Real	Power a	nd Freque	ency Con	trol.	Anal	lyse
CO4	Describe	and Analyse the econom	ic operat	tion of po	ower syste	em.		Anal	lyse
CO5	Explain	the modeling and analysis	s of Reac	tive Pow	ver and Vo	oltage Co	ntrol.	Anal	lyse
UNIT-I	Prelimir	naries on Power System	Operati	on and C	Control			Periods:	09
Power scenario in	Indian gr	id - Power system securit	y- Facto	rs affecti	ing syster	n security	/- Nece	ssity for	
regulation of syst	em freque	ency and voltage- P-F ar	nd Q-V o	control s	tructure -	· Power s	systems	control	601
problems - Differe	ent operati	ng states of power Syster	ns- Ener	gy contro	ol centres	and its fi	inctions	s-Phasor	COI
measurement unit	- SCADA	systems.							
UNIT-II	Load Fo	orecast and Unit Commi	tment					Periods:	09
Load and load du	ration cur	ves - Load forecasting -	compone	ents of sy	ystem loa	d- classif	ication	of load,	
forecasting of the	base load	by method of least square	e fit-Intro	oduction	to unit co	ommitme	nts - co	nstraints	CO2
on unit commitme	ent - unit c	ommitment using priority	list met	hod and o	dynamic p	orogramn	ning me	ethod.	
UNIT-III	Real Por	wer - Frequency Contro	1					Periods:	09
Power control me	chanism o	f individual machine- Ma	athematio	cal mode	l of speed	d governi	ng mec	hanism-	
Speed load charac	cteristics c	of governing mechanism-	Regulati	on of tw	o generat	ors in pa	rallel-	Division	
of power system	into con	trol areas-LFC control of	of a sing	gle area;	static a	nd dynar	nic ana	lysis of	CO3
uncontrolled syste	em- propor	tional plus integral contro	ol of a si	ngle area	a- LFC co	ntrol of t	wo area	a system	
- static and dynam	nic respons	se-Tie line with frequency	v bias cor	ntrol of ty	wo area.				
UNIT-IV	Econom	ic Operation of Power S	ystem					Periods:	09
Statement of econ	omic disp	atch problem - input and	output cl	naracteris	stics of th	ermal pla	nt -inci	remental	
cost curve - co-or	dination eq	quations with losses negle	ected- sol	ution by	iteration-	- co-ordin	ation e	quations	
with loss included	l - solutior	n of co- ordination equation	ons using	g Bmn c	o-efficien	t (No der	ivation	of Bmn	CO4
co-efficient) - Bas	se point ar	nd participation factors -	Special a	aspects o	of Emissio	on constra	ained e	conomic	
dispatch.	1								
UNIT-V	Reactive	e Power – Voltage Contr	ol					Periods:	09
Fundamental char	acteristics	of excitation system - Au	utomatic	Voltage	Regulato	r (AVR)	– brush	less AC	
excitation system	ı – block	diagram representation	of AVI	R loop	- static a	ınd dyna	mic an	alysis -	
Generation and a	bsorption	of reactive power- Meth-	ods of v	oltage co	ontrol-tap	changin	g transi	former -	CO5
Static VAR comp	ensator sai	nd STATCOMs - compar	isons of	different	types of o	compensa	iting eq	uipment	
for transmission s	ystems.								
Total Contact H	ours: 45	Tutorial Hours: 00]	Practical	Hours: (00	Tot	al Hours:	45

Reference Book:

- 1. Olle. I. Elgerd, 'Electric Energy Systems theory An introduction', McGraw Hill Education Pvt. Ltd., New Delhi, 2nd Edition, 2017.
- 2. Allen. J. Wood and Bruce F. Wollen berg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2016.
- 3. Abhijit Chakrabarti and Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.
- 4. Kothari D.P. and Nagrath I.J., 'Modern Power System Engineering', Tata McGraw-Hill Education, Standard Edition, 2022.
- 5. Hadi Saadat, 'Power System Analysis', McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
- 6. Kundur P., 'Power System Stability and Control, McGraw Hill Education Pvt. Ltd. New Delhi, 10th reprint, 2010.

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO12	PSO1	PSO2									
CO1	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-	1	-
AV	2	2	-	-	-	-	-	-	-	-	-	-	1	-

Department: Elec	trical and Electronics Engineering	Program	mme: B. '	Tech., (E	E)					
Semester:Sevent	h	Subject	t Categoi	ry: PCC	Ser	nester E	xam Type	: TY		
Course Code	Course	Pe	eriod / W	eek	Credit	Ma	ximum M	arks		
	Course	L	Т	Р	C	CA	SE	TM		
EEA127	Protection and Switchgear	3	-	-	3	25	75	100		
Prerequisite	-									
Course Outcome	Course Or	utcome S	tatement	;			Lev	el		
CO1	Select proper earthing and pro apparatus and components.	otection	scheme	for the	power s	ystem	App	oly		
CO2	Demonstrate the principles of Elec	ctromagr	netic and	Static Re	lays.		Unders	stand		
CO3	Analyse the applications of relays	for the p	rotection	n of powe	r compor	ents.	Anal	yse		
CO4	Identify Common faults in Tra	insforme	rs and '	Transmis	sion line	s and	App	olv		
	propose suitable protective schem	es.	• •				PP	- 5		
CO5	Explain operating principles of protection.	various	switchg	ears for	power s	ystem	App	oly		
UNIT-I Pr		l	Period	s: 09						
Principles and ne	nciples and need for protective schemes – nature and causes of faults – types of faults – Methods									
Grounding - Zone	es of protection and essential qualitie	es of prot	ection -	Protectio	n scheme			COI		
UNIT-II El	ectromagnetic Relays						Period	s: 09		
Operating princip	oles of relays - Universal relay – 7	Forque e	quation	– R-X d	iagram –	Electror	nagnetic			
Relays – Over c	urrent, Directional, Distance, Diffe	erential,	Negativ	e sequen	ce and U	Jnder fr	requency	CO2		
relays.										
UNIT-III A	pparatus Protection						Period	s: 09		
Current transform	ners and Potential transformers and	their app	lications	in protect	ction sche	emes -Pi	otection	CO3		
of transformer, ge	enerator, motor, bus bars and transmi	ission lin	e.					000		
UNIT-IV St	atic Relays and Numerical Protect	tion					Period	<u>s: 09</u>		
Static relays – Pl	nase, Amplitude Comparators – Syn	thesis o	f various	s relays u	sing Stati	c comp	arators –	GOL		
Block diagram of	Numerical relays – Over current pr	rotection	, transfo	rmer diffe	erential p	rotection	n, distant	CO4		
UNIT V C	smission lines.						Doriod	 s• 00		
Dhyging of aroing	nhonomonon and are intermution	DC an	d AC air	auit braa	leina ro	atrilin	r erious	S: U 9		
and recovery vol	tage - rate of rise of recovery vo	ltage -	resistanc	e switchi	$n\sigma = cm$	rent ch	onning -			
interruption of c	anacitive current - Types of circuit	t breake	rs – air	blast air	break o	oil SF6	MCBs	CO5		
MCCBs and vacu	um circuit breakers – comparison o	of differe	nt circui	t breakers	-Rating	and sel	ection of	005		
Circuit breakers.										
Total Contact H	Iours: 45 Tutorial Hours:00]	Practical	l Hours:	00	Tota	al Hours:	45		
Reference Book		I								
1. Sunil S. Rao, '	Switchgear and Protection', Khanna	Publishe	ers, New	Delhi, 20	008.					
2. B. Rabindrana	2. B. Rabindranath and N. Chander, 'Power System Protection and Switchgear', New Age International (P)									
Ltd., First Edit	ion 2011.			0	C					
3. ArunIngole, 'S	witch Gear and Protection' Pearson	Educatio	on, 2017.							
4. BadriRam, B.H	I. Vishwakarma, 'Power System Pro	otection a	ind Swite	chgear', N	New Age	Internati	ional Pvt I	_td		
Publishers, Sec	cond Edition 2011.									
5. Y.G. Paithanka	ar and S.R. Bhide, 'Fundamentals of	power s	ystem pr	otection',	Second I	Edition,	Prentice H	lall		
of India Pvt. L	ta., New Delhi, 2010.	Ducto	, DITI	Lague	Duissat	4.1 NT	D-11.			
0. Kavindra P. Sii 2009.	ngn, Swucngear and Power System	Protection	on, PHI	Learning	Private I	Jua., INEV	w Deini,			
7. Bhavesh Bhali	a, R.P. Maheshwari, Nilesh G.Chota	ni, 'Prot	ection an	nd Switch	gear' Oxf	ord Uni	versity Pr	ess,		
2011.		-			~		-	-		

COs	Program Outcomes (POs)												Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO 2 3 1 </td <td>PSO2</td>												PSO2
CO1	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO2	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO3	3	3	1	1	-	-	-	-	-	-	-	1	2	-
CO4	3	2	1	-	-	-	-	-	-	-	-	1	2	-
CO5	3	3	1	1	-	-	-	-	-	-	-	1	2	-
AV	3	2.8	1	0.8	-	-	-	-	-	-	-	1	2	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)											
Semester :Sevent	h	Subj	ect Categ	gory: PC	C Se	emester E	Exam Type	e: TY			
Course Code	Course	P	eriod / V	Veek	Credit	Ma	aximum M	larks			
		L	Т	Р	C	CA	SE	TM			
EEA128	Solid State Drives	3	-	-	3	25	75	100			
Prerequisite	-										
Course Outcome	Course Outc	ome S	tatement				Lev	vel			
CO1	Demonstrate the Electrical drive characteristics.	s dyr	namics	and revi	ew of	motor	Under	stand			
CO2	Utilize controlled rectifiers for the s quadrants,	peed	control c	of de mot	ors in di	ifferent	App	oly			
CO3	Design and Analyse the current and motor drives.	d spee	ed contro	ollers for	solid sta	ate DC	Anal	yse			
CO4	Apply power electronic converter Motors.	for t	he spee	d contro	l of Inc	luction	App	oly			
CO5	Examine the open loop and closed drives and gain knowledge of FOC.	loop o	operation	of Sync	hronous	Motor	Anal	yse			
UNIT-I	Fundamentals of Electric Drives						Periods:	09			
Solid State Electric Drives-Merits over conventional drives, elements, choices; Mechanical characteristics of electrical motors; Components of load torque and mechanical characteristics of different loads; Joint speed – torque characteristics with example. Motor power rating-classes of motor duty, selection of power rating for drive motors with regard to thermal overloading and load variation factors, thermal model of motor for heating and cooling; Steady state stability; Load equalization.											
UNIT-IIPhase Angle Controlled Rectifier DC DrivesPeriods: 09											
History of DC dr torque operation. controlled drives problems. Closed	ives, Ward–Leonard scheme; Speed of Phase angle-controlled rectifier DC D – quadrants of operation, waveforms loop control of DC drive- regenerative	control rives - , spee e braki	l of DC –Single j d-torque ing and r	motors-co phase and character eversing.	onstant l three p ristics, r	HP and the hase sement of the hase sements of	constant ni & full umerical	CO2			
UNIT-III	DC Chopper Drives		U				Periods:	09			
Class A, B, C, waveforms, speed Regenerative brak	D and E chopper drives- quadrants d-torque curves, related numerical ring and reversing.	s of c proble	peration ms. Clo	, options osed loop	s in gat o contro	e pulse 1 of DC	pattern, C drive-	CO3			
UNIT-IV	Induction Motor Drives						Periods:	09			
Stator voltage control- principle, slip-torque characteristics, AC voltage controller drive and configurations. Stator frequency control - principle, slip-torque characteristics, cycloconverter drive, and drawbacks. V/f control- principle, slip-torque characteristics, constant HP and constant torque regions. Rotor resistance control- speed-torque characteristics, equivalent chopper resistance. Slip power control schemes- Kramer and Scherbius drives. UNIT-V Synchronous Motor Drives and FOC Concents											
UNIT-V	Synchronous Motor Drives, and F	OC C	oncepts				Periods:	09			
Synchronous Mot of operations, Mar FOC in Induction control, Phasor d oriented) in VSI for Total Contest Ho	or Drives: Open loop volts/hertz cont rginal angle control. n Motor Drives: Vector control con- liagram of vector controller and prin ed Induction motor drive system.	rol, tro cept; 1 nciple	ue synch DC mote steps; I	ronous an or analog Direct ver	nd self-c gy; Scala ctor con	controlled ar versus atrol (Ro	d modes s vector tor flux	CO5			
I OTAL CONTACT HO	ours: 45 I utorial Hours:00	rra	cucal H	ours: 00		i otal He	ours: 45				

Reference Book:

1. Dubey G.K., "Fundamentals of Electrical Drives", Narosa Publishing House, Second Edition ,2015

2. Krishnan R., "Electric Motor & Drives: Modelling, Analysis and Control", Pearson Education, 2015

3. Bimal K Bose, "Modern Power Electronics and AC Drives" Pearson Education, 2016

4. Vedam Subramanyam, "Electric Drives - Concepts and Applications", McGraw Hill, Second Edition ,2010

5. Pillai S.K., "A First Course on Electrical Drives"., New Age International Publishers, Third Edition, 2013.

6. Muhammad H. Rashid, "Power Electronics: Circuits, Devices and Applications", Pearson Education, 4th Edition, 2017.

COs					Prog	ram Out	tcomes ((POs)					Program Specific Outcomes (PSOs)	
	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 P												PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	1	2	-
CO2	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-
CO3	3	3	1	-	-	-	-	-	-	-	-	1	2	-
CO4	3	2	1	-	-	-	-	-	-	-	-	1	2	-
CO5	3 3 1 1											1	2	-
AV	3	2.8	1	-	-	-	-	-	-	-	-	1	2	-

Department: Elec	trical and Electronics Engineering	ing Programme: B.Tech., (EE)									
Semester: Sevent	h	Sub	ject Cat	egory: I	PCC	Semeste	er Exam	Туре: LB			
Course Code	Course	P	eriod / V	Veek	Credit	Ma	ximum	Marks			
Course Coue	Course	L	Т	Р	С	CA	SE	TM			
EEA129	Power Systems Laboratory	-	-	4	2	25	75	100			
Prerequisite	-										
Course Outcome	Course Outco	me St	tatement	t			Level				
CO1	Model and analyze the performan	nce of	f the tra	nsmissic	on lines.		Analys	se			
CO2	Perform power flow, short circu power system network.	iit, an	d stabil	ity analy	ysis for any		Analys	se			
CO3	Design, and analyze the load free	quenc	y contro	ol mecha	nism		Analys	se			
CO4	Perform optimal scheduling of g of the power system.	genera	ators an	d compi	ite the state		Apply	Apply			
CO5	Understand, analyze, and apply protection.	y the	relays	for po	wer system		Apply				
Any 12 experime	ents:										
1. Computation and modelling of transmission Lines.											
2. Forma	Formation of Bus Admittance and Impedance Matrices.										
3. Power	r Flow Analysis Using Gauss-Seid	el Me	ethod.								
4. Power	r Flow Analysis Using Newton Ra	phson	n Metho	d.							
5. Symm	netric and Unsymmetrical Fault An	nalysi	s.					CO2			
6. Short	circuit studies of Power System.										
7. Trans	ient Stability Analysis of SMIB Sy	vstem.									
8. Load	- Frequency Dynamics of Single-	Area	and Tw	o-Area I	Power System	ns.		CO3			
9. Numerical Integration of Swing equation											
10. Econo	omic Dispatch in Power Systems.							CO4			
11. Load	curve and load duration curve							0.04			
12. Perfor	mance and characteristics analysis	s of o	ver curr	ent relay	•						
13. Perfor	mance and characteristics analysis	s of o	ver volta	age and	under voltag	e relay.		CO5			
14. Testin	ng of CT, PT, and Insulator string.										
15. Relay	Coordination in Radial Feeder Pro	er Protection Scheme.									
Total Contact Ho	ours: 00 Tutorial Hours:00		Prac	tical Ho	ours: 60	Tot	al Hour	s:60			

COs					Prog	ram Out	tcomes ((POs)					Prog Spe Outc (PS	gram cific omes Os)
	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 2 3 3 1 1 1 1												PSO2
CO1	3	3	2	3	3	-	-	1	-	-	-	2	3	2
CO2	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											3	2
CO3	3	3	2	3	3	-	-	1	-	-	-	2	3	2
CO4	3	3	3	3	3	-	-	1	-	-	-	2	3	2
CO5	3 3 1 3 3 1 - 2										2	3	2	
AV	3	3	2	3	3	-	-	1	-	-	-	2	3	2

Department: Elect	rical and Electronics Engineering	Program	nme: B. 7	Гесh., (Е	E)				
Semester:Seventh	L	Subject	Categor	y: PAC	Ser	nester E	xam Typ	e: PR	
Cauraa Cada	Course	Pe	riod / W	eek	Credit	Ma	ximum M	larks	
Course Code	Course	L	Т	Р	C	CA	SE	TM	
EEA130	Seminar	-	-	2	1	100	-	100	
Prerequisite	-								
Course Outcome Course Outcome Statement							Level		
CO1	Image: Course outcome statement Level At the end of the course, the students will be able to independently comprehend advances in Electrical and Electronics Engineering and also be able to prepare presentations and deliver the concepts in a professional group. Understand								
The objective of chosen topic conn the Faculty coord the topic. The s performance of th	seminar is to enable the students ected with Electrical & Electronics inators. Each student is expected to tudents are expected to present e students.	to carryo Enginee make a a semina	out indivering. The critical read	vidual wo e topic sh review of epartment	ork and p nall be ch literature tal comm	resent a osen in e and pr nittee sl	seminar consultation epare a rest nall evalut	on any ion with eport on late the	

COs	Program Outcomes (POs)											Prog Spec Outco (PS	Program Specific Outcomes (PSOs)	
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 F										PO11	PO12	PSO1	PSO2	
CO1	1	1	1	1	1	3	1	3	3	3	3	3	3	2
AV	1	1	1	1	1	3	1	3	3	3	3	3	3	2

Department: Humanities and Social Sciences Programme: B.Tech., (EE)											
Semester: Seventh	1		Subject	Categor	y: PCC	Sei	mester E	хат Туре	:: LB		
Comme Co. In		C	Pe	riod / W	eek	Credit	Max	ximum M	arks		
Course Code		Course	L	Т	Р	C	CA	SE	TM		
EEA131	Profession	nal Ethics	-	-	2	0	-	-	-		
Prerequisite	-										
Course Outcome		Course O	utcome St	tatement				Lev	el		
CO1	Outline the	e ethical and moral prin	nciples					Unders	stand		
CO2	Explain et	hical problems and anal	yze them	l				Unders	stand		
CO3	Confront r	noral issues and dilemm	nas					Unders	stand		
CO4	Apply the	ethical theories to resol	ve moral	issues				App	ly		
CO5	Discus ma	ajor ethical theories						Unders	stand		
The course should cover the following topics by way of Seminars, Expert Lectures and Assignments.											
Profession – Mora	als – Ethics	and Moral - Professio	nal Ethic	s – Ethi	cs and S	cience. T	ypes of	Ethics –	COL		
Normative Ethics,	Meta-Ethic	s and Applied Ethics.							COI		
Ethical problems	and analysi	s - Engineering Ethics	s – Micro	o-Ethics,	Macro-	Ethics. E	thical ar	nalysis –	CO2		
Normative Inquiry	, Conceptua	ll Inquiry and Factual Ir	nquiry – (Case Stu	dy.				02		
Moral Dilemmas	– definitio	n – examples of mor	al dilem	mas – 1	nethodol	ogy for	resolvin	g moral	CO3		
dilemmas. Kohlbe	rg's theory of	of moral development –	Heinz's	dilemma	ı – Gilliga	an's theor	ry – Case	e study.	005		
Consensus and Co	ntroversy –	Authority and Autonon	ny – Mult	tiple Mot	tives – Sa	afety in E	ngineeri	ng	CO4		
Ethical Theories -	- Virtue Etł	nics: Aristotle and Mac	eIntyre, U	Jtilitariaı	n Ethics:	Act Util	litarian a	nd Rule	CO5		
Utilitarian, Duty E	thics and R	ghts Ethics - Case Stud	y. Engine	eering as	Social E	xperimer	ntation.				
Total Contact Hours: 00Tutorial Hours:00Practical Hours: 30Total Hours:30											
Reference Book:											
1. Mike W. Martin	n and Rolan	d Schinzinger, Ethics in	Enginee	ring, Tat	a McGra	w-Hill, 2	003				
2. Charles B. Fled	dermann, Ei	ngineering Ethics, Pears	son Prent	ice Hall,	New Jers	sey, 2004					
3. Charles E. Harr	is, Michael	S. Pritchard and Michae	el J. Rabi	ns, Engiı	neering E	thics – C	oncepts	and Cases	,		
Thompson Wac	lsworth, A I	Division of Thomson Le	arning In	ic., Unite	ed States,	2000.					

COs					Prog	ram Out	tcomes	(POs)					Program Specific Outcomes (PSOs)	
	PO1	PO2	PO12	PSO1	PSO2									
CO1	-	-	-	-	-	-	-	3	-	-	-	2	1	-
CO2	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-
CO3	-	-	-	-	-	-	-	3	-	-	-	2	1	-
CO4	-	-	-	-	-	-	-	3	-	-	-	2	1	-
CO5	3 2											2	1	-
AV	-	-	-	-	-	-	-	3	-	-	-	2	1	-

VIII SEMESTER

Department: Electri	ical and Electronics Engineering	Progra	amme:	B.Tech	., (EE)			
Semester: EIGHTI	ł	Subje	ct Categ	gory: P	AC	Semester Exam	Type:	PR
Course	Gumma	Period	ls/Weel	k	Credit	Maximum	Marks	5
Code	Course	L	Т	Р	С	CA	SE	TM
EEA132	COMPREHENSIVE TEST	-	-	-	1	100	-	100
Prerequisite								
Course Outcome	Summarise the fundamental conce Engineering	epts of	all the	core	courses i	n Electrical and	Electr	onics
Students will prepare for objective type questions in all core courses. An end semester examination will be conducted to evaluate the critical thinking of the students and at the standard of national level competitive								
examinations.								

COs	Program Outcomes (POs)												Prog Spe Outc (PS	Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	3	3	3	3	3	3	3	3	3	3	3	
AV	3	2	2	3	3	3	3	3	3	3	3	3	3	3	

Department: Electri	cal and Electronics Engineering	Programme: B.Tech., (EE)								
Semester: EIGHTH	I	Subj	ect Ca	tegory	: PAC	Semester Exam 7	Type: P	'R		
Course	Course	Perio	ods/We	eek	Credit	Maximum	Marks			
Code	Course	L	Т	Р	С	CA	SE	TM		
EEA133	EEA133 INTERNSHIP		-	-	2	100	-	100		
Prerequisite	-									
Course Outcome Discover the practical skills through			nship/1	trainin	g at indus	tries.				

The student is required to undergo 'internship' in industry / research laboratory / higher learning institution for a period of at least 6 weeks in a maximum of 3 spells during vacations. Each spell of internship shall be for a period of not less than 2 weeks. The main purpose of internship is to enhance the general professional outlook and capability of the student to advance his chances of improving the career opportunities. The student should get prior approval from the Head of the Department before undertaking the internship and submit a detailed report after completion for the purpose of assessment.

COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	3	3	3	3	3	3	3	3	3	3
AV	3	2	2	3	3	3	3	3	3	3	3	3	3	3

Department	: Electrical and Electronics Engineering	ing Programme: B.Tech., (EE)						
Semester	: EIGHTH	Subj	ect Ca	tegory	/: PAC	Seme	ster E	xam
						Туре	: PR	
Course	Course	Perio	ods/W	eek	Credit	Maxi	mum l	Marks
Code	Course	L	Т	Р	С	CA	SE	TM
EEA134	PROJECT WORK	16	-	-	8	40	60	100
Prerequisite	Proficiency in Electrical and Electronics Engi	neerin	g.					
Course Outcome	At the end of the course, the students will Electronics Engineering with analytical, exper to one or more areas.	cs Engineering. nts will be able to work in any field of Electrical al, experimental, design and combination of these relations						cal & elated
In this project worl development would the effectiveness of same should be pres analysis has to be done to validate the carried out in the p team is expected symposiums. Team referred journals	k, the team would solve the problem taken up be completed and the hardware results will be the developed set up. Necessary inferences have sented before the committee members. If the pre- completed and suitable comparison to existing e correctness as well as effectiveness of the w rocess to ascertain whether the work qualifies to present their work at National/Internation that has come out with novel contribution w	o for s comp- e to be oject i ; meth ork. F as a s nal co ill be	study. ared w drawn nvolve odolog Rigoro uitable onferen encou	Simul vith th n from es inte gies rev us rev e proj- nces uraged	lation studie e simulation the studies nsive analyte ported in h iew by the ect at the gr or at the s to publish	s and/o result: carried ical protecture terature comminaduate tudent: their v	or hard s to va l out an ocedun e shou ittee w level. s' tecl work i	dware ilidate nd the re, the ild be vill be Each hnical n any

COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	3	3	3	3	3	3	3	3	3	3
AV	3	2	2	3	3	3	3	3	3	3	3	3	3	3

PROFESSIONAL ELECTIVE (VI SEMESTER)

Department: Electri	cal and Electronics Engineering	ring Programme: B.Tech., (EE)							
Semester:SIXTH		Subject	t Categor	y: PEC	Sei	nester l	Exam Typ	e: TY	
Caura Cada	Course	Pe	riod / W	eek	Credit	Ma	aximum M	larks	
Course Code	Course	L	Т	Р	C	CA	SE	TM	
EEA201	Electrical Safety and Quality Management	3	-	-	3	25	75	100	
Prerequisite							·		
Course Outcome	Course Ou	utcome S	tatement				Lev	vel	
CO1	Describe the Indian Electricity (safety.	IE) acts	and var	ious rule	s for ele	ctrical	Under	stand	
CO2	Expose the electrical safety in in installations.	residenti	al, comn	nercial a	nd agricu	ultural	Арј	ply	
CO3	Identify the electrical safety during operation and maintenance.	g installa	tion, test	ting and c	ommissi	oning,	Арј	ply	
CO4	Арј	oly							
CO5Discus about quality control and management due to powerfactor.Un									
UNIT-I Review of IE Rules and Acts and Their Significance Period									
Objective and scop	e- Ground clearances and section	n clearai	nces- Sta	andards o	n electri	cal safe	ty- Safe	CO1	
limits of current, vo	ltage-earthing of system neutral –	Rules reg	garding f	ïrst aid ar	nd firefig	hting fa	cility.	COI	
UNIT-II	Electrical Safety in Residential,	Comme	rcial and	1			Periods:	09	
	Agricultural Installations								
Wiring and fitting-	-Domestic appliances– Water tap	p giving	shock-S	Shock fro	m wet v	vall–Fa	n Firing	GQA	
shock–Multi-storey	ed building-lemporary installat	ions–Agi	rıcultural	pump 1	nstallatio	n - D	o's and	CO2	
Don'ts for safety in	the use of domestic electrical app.	liances.	C	aionina () - avatia		Douisday	00	
	salety During Installation, Testi and Maintenance	ing and	Commis	sioning, v	Jperatio	n	Perious:	09	
Preliminary prepara	ations-safe sequence-Risk of n	lant and	equinm	nent_Safe	ty docur	nentatio	n_Field		
quality and safety -	Personal protective equipment – S	Safety cl	earance i	notice $-S$	ly doeu afety pre	ecaution	ns – Safe	CO3	
guards CO3for oper	rators– Safety				pro			000	
UNIT-IV	Electrical Safety in Hazardous A	Areas					Periods:	09	
Hazardous zones-cl	lass 0,1 and 2– spark, flashovers a	and coro	na discha	arge and f	functiona	l requir	ements-		
Specifications of el	lectrical plants, equipments for 1	hazardou	is locatio	ons– Clas	sification	n of eq	uipment	004	
enclosure for variou	is hazardous gases and vapours- C	Classifica	tion of e	quipment	/enclosu	e for h	azardous	CO4	
locations.									
UNIT-V Quality Management Periods: 09									
Total quality control and management–Importance of high load factor– Disadvantages of low power									
factor – Causes of lo	ow P.F.– Power factor improveme	nt– Equi	pment-	Importan	ce of P.F.	. impro	vement.		
Total Contact Hou	ars: 45 Tutorial Hours:00		Practical	Hours:	00	Tot	tal Hours:	:45	
Reference Book:		~ 0			~ ^ > > -				
1. S. Rao, R.K.Jain,	, H.L. Saluja, Electrical Safety, Fir	e Safety	Enginee	ring and s	Safety M	anagem	ent, Khan	na	
Publishers, New De	elhi, 1997.	NT •		10.0	11 1 D	1 1 6	с II'I	1	
2. Al Winfield, Mar	ry Capelli-Schellptetter and Denni	s Neitze	I, Electri	cal Safety	Hand B	ook, M	cGraw Hil	1	
Publications, 2018.	Covia Nicoli Electrical Coffee C	torra C		liter 1 (C Desce 2	014	
J. Iviarina J. Boss, C.	Jayle Inicoli, Electrical Safety: Sys	SIEMS, SI		x_{2015}	Siewards	mp, CR	C Press, 2	014.	
5 W Fordham-Coo	oper. Electrical Safety Engineering	. Newne	s. 2002	cy, 2013.					

COs	Os Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	-	-	1	2	-	-	-	-	-	1	-
CO2	1	1	1	-	-	1	2	-	-	-	-	-	1	-
CO3	1	1	1	-	-	1	2	-	-	-	-	-	1	-
CO4	1	1	1	-	-	1	2	-	-	-	-	-	1	-
CO5	1	1	1	-	-	1	2	-	-	-	-	-	1	-
AV	1	1	1	-	-	1	2	-	-	-	-	-	1	-

Department: Elect	rical and Electronics Engineering	ring Programme: B.Tech., (EE)						
Semester:SIXTH		Subject	t Categor	y: PEC	Ser	nester E	xam Type	e: TY
Course Code	Course	Pe	eriod / W	eek	Credit	Ma	ximum M	arks
Course Code	Course	L	Т	Р	C	CA	SE	TM
EEA202	Digital System Design using VHDL	3	-	-	3	25	75	100
Prerequisite	Digital circuits							
Course Outcome	Course Ou	utcome S	tatement				Lev	vel
CO1	Compare architecture of different	Program	mable L	ogic devi	ces		Under	stand
CO2	Recall the basic design units of a	VHDL n	nodel and	l related s	yntax.		Under	stand
CO3	Outline VHDL constructs used environments and to build comple	in both te logic s	n the sy structures	nthesis a s	ind simu	lation	Under	stand
CO4	Demonstrate skill needed to be circuits, flip flops, registers and co	uild VH ounters	IDL mo	dels for	combina	tional	App	oly
CO5	Develop VHDL code for synchror	nous and	asynchro	onous cire	cuits.		Crea	ate
UNIT-I	Programmable Logic Devices		-			ĺ	Periods:	09
Digital Hardware	-Standard chips, Programmable lo	gic devi	ices- PL	A, PAL-	advance	d PALs	, GAL,	
HCPLD- CPLD a	and FPGA. Custom chips, ASIC Cl	hips, Ga	te Array	s. Digital	Hardwar	e Desig	n-CAD	CO1
Tools – Behaviou	ral, structural simulation, Physical d	lesign, ti	ming sim	ulation, a	nd chip c	onfigur	ation.	
UNIT-II	VHDL Design Units and Archite	ecture S	tyles				Periods:	09
Introduction- Des	sign Units in VHDL: Entity, Arc	chitectur	e, Confi	guration,	Package	s. Sign	als and	
variables. Entity	declaration, Architecture-styles:	concurr	ent arch	itecture,	signals	and va	riables.	
Dataflow archite	cture, Structural description of	VHDL-	compone	ent decla	ration a	nd con	nponent	CO2
instantiation. Ob	ject and Data Types. Behaviour	ral desc	ription-c	oncurrent	stateme	ents, op	erators,	
sequential-process	s- if-then, case, loop, generics.		-			-		
UNIT-III	Subprograms and Packages use	d in VH	DL				Periods:	09
Subprograms and	packages- functions, procedures, t	functions	s, packag	ge declara	ation and	packag	e body.	
Predefined Attrib	utes: value, function and signal ki	nd attrib	outes. Co	onfiguration	ons- defa	ult, con	nponent	CO3
configuration and	entity-architecture pair types. Gene	erics. Ali	ases, Rep	petition lo	ogic- gene	erate, sy	nthesis-	COJ
Timing constraint	S.							
UNIT-IV	Combinational Circuits, Flipflo	ps, Regis	sters and	l Counter	rs.		Periods:	09
Combinational cir	rcuit design using VHDL- Half/Fu	ill adder	, subtrac	tor, Mult	iplexers,	Demult	iplexer,	
Decoders, Encode	ers, Code converters. Latches, Fli	p Flops-	-JK, SR,	T, D F	lip Flops	, shift 1	register,	CO4
parallel access shi	ft register, Counters-Binary, BCD,	Ring co	unter, De	esign Exa	mples-Bu	is struct	ure and	0.04
simple processor.								
UNIT-V	Sequential Synchronous/Asynch	ronous	Circuit l	Design			Periods:	09
Synchronous Seq	uential Circuits-Design steps-state	assignm	ent prob	lem- Fini	ite state	nachine	s using	
CAD tools- MOC	ORE and MEALY type FSM- Exam	nples, Ve	ending M	lachine. A	synchron	nous Se	quential	CO5
Circuits- analysis	, concept of stable and unstable s	tates, ha	zards an	d design	example	- SR la	tch and	
Vending machine								
Total Contact H	controller							
Reference Book:	controllerours: 45Tutorial Hours:00		Practical	Hours:	00	Tota	al Hours:	45
	controller ours: 45 Tutorial Hours:00]	Practical	Hours:	00	Tota	al Hours:	45
1. Stephen Brown	controller ours: 45 Tutorial Hours:00 , ZvonkoVranesic, "Fundamentals of	of Digita	Practical l Logic E	Hours:	00 th VHDL	Tot a ", Tata 1	al Hours: McGraw 1	45 Hill,
1. Stephen Brown Third Edition, 2	controller ours: 45 Tutorial Hours:00 , ZvonkoVranesic, "Fundamentals c 2012.	of Digita	Practical	Hours:	00 th VHDL	Tota	al Hours: McGraw]	45 Hill,
 Stephen Brown Third Edition, 2 Douglas L.Perr 	controller ours: 45 Tutorial Hours:00 , ZvonkoVranesic, "Fundamentals of 2012. y, VHDL Programming by Example	of Digita	Practical l Logic E lcGraw H	Hours: (Design with Hill Fourt	00 th VHDL	Tot : ", Tata] , 2002.	al Hours: McGraw]	45 Hill,
 Stephen Brown Third Edition, 2 Douglas L.Perr Charles H. Roth 	controller ours: 45 Tutorial Hours:00 , ZvonkoVranesic, "Fundamentals of 2012.	of Digita e, Tata M VHDL, 7	Practical I Logic E IcGraw I Thomson	Hours: (Design with Hill Fourt Learning	00 th VHDL	Tot : ", Tata] , 2002.	al Hours: McGraw 1	45 Hill,
 Stephen Brown Third Edition, 2 Douglas L.Perr Charles H. Rotl Ben Cohen, VH 	controller ours: 45 Tutorial Hours:00 , ZvonkoVranesic, "Fundamentals of 2012.	of Digita e, Tata M VHDL, T ies, Spri	Practical I Logic E IcGraw H Thomson nger, 2nc	Hours: O Design wit Hill Fourt Learning Edition,	00 th VHDL h Edition (2007. 2005. 2007.	Tot : ", Tata] , 2002.	al Hours:	45 Hill,
 Stephen Brown Third Edition, 2 Douglas L.Perr Charles H. Roth Ben Cohen, VH Stainley Mazor 	controller ours: 45 Tutorial Hours:00 , ZvonkoVranesic, "Fundamentals of 2012. y, VHDL Programming by Example 1 IDL Coding Styles and Methodolog Patricia Langstraat, A Guide to VF	of Digita e, Tata M VHDL, T ties, Spri- HDL, Spri-	Practical I Logic I IcGraw I Ihomson nger, 2nd ringer, 2r	Hours: O Design wit Hill Fourt Learning I Edition, nd Edition	00 th VHDL h Edition g, 2007. 2005. h, 2007.	Tot : ", Tata] , 2002.	al Hours:	45 Hill,
 Stephen Brown Third Edition, 2 Douglas L.Perr Charles H. Rotl Ben Cohen, VH Stainley Mazor Website material 	controller ours: 45 Tutorial Hours:00 , ZvonkoVranesic, "Fundamentals of 2012. y, VHDL Programming by Example 1 n.Jr, Digital Systems Design Using VIDL Coding Styles and Methodolog patricia Langstraat, A Guide to VH al.Hill 2013.7. Bali N. and Goyal M	of Digita e, Tata M VHDL, T jies, Spri HDL, Spri I., Advan	Practical I Logic I IcGraw H Thomson nger, 2nd ringer, 2r icced Engi	Hours: (Design with Hill Fourt Learning Hedition, nd Edition ineering M	00 th VHDL h Edition g, 2007. 2005. n, 2007. Mathemat	Tot : ", Tata] , 2002. ics, Lax	al Hours: McGraw I	45 Hill,

COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	1	2	2	1	-	-	-	-	-	-	1	2	2
CO2	-	2	2	2	1	-	-	-	-	-	-	1	3	1
CO3	-	2	3	2	2	-	-	-	-	-	-	1	2	1
CO4	-	1	3	3	2	-	-	-	-	-	-	1	2	2
CO5	-	1	2	3	2	-	-	-	-	-	-	1	3	2
AV	-	1.4	2.4	2.4	1.6	-	-	-	-	-	-	1	2.4	1.6

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)											
Semester:SIXTH		Subject	Categor	y: PEC	Ser	nester]	Exam Type	e: TY			
Course Code	Course	Pe	riod / W	eek	Credit	M	aximum M	larks			
	Course	L	Т	Р	C	CA	SE	TM			
EEA203	Special Electrical Machines	3	-	-	3	25	75	100			
Prerequisite	Basic knowledge in Electrical Ma	chines									
Course Outcome	Course Or	utcome S	tatement				Lev	vel			
CO1	Explain the basic concepts of Sing	gle-phase	machine	e and its a	pplicatio	n.	Under	stand			
CO2	Demonstrate various types of ste and logic circuits for speed of ster	epper mo	tor and	apply po	wer conv	verters	Арр	oly			
CO3	Analyze the characteristics an synchronous reluctance motors an	d differ d linear 1	rent typ notors.	es of c	controller	s for	Anal	lyse			
CO4	Apply power converter for the d analyse the characteristics.	evelopm	ent of B	rushless	dc motor	rs and	Anal	lyse			
CO5 Analyze the operation and performance of permanent magnet synchronous motors and their applications Understand											
UNIT-I	Single Phase Machines						Periods:	09			
Principle and con	struction of split phase motors - S	haded P	ole moto	or - Repu	lsion mo	tor – L	Iniversal				
motor – unexcited	synchronous single-phase motor –	AC and	DC Serv	o motor –	- Linear I	nductic	on Motor	CO1			
– Applications.											
UNIT-II	Stepper Motor						Periods:	09			
Constructional fea	atures-principle of operation-Types Stepper motor –Static and Dynamic	of motor Characte	rs– Mode eristics au	es of ope nd Applic	ration–Di ations.	rive sys	stem and	CO2			
UNIT-III	Switched Reluctance Motor			I I			Periods:	09			
Constructional de	tails-principles of operation- Torc	jue prod	uction-d	rive circ	uits–Curr	ent reg	ulation-				
Torque speed cha	racteristics- Speed and torque cor	ntrol– Sta	atic obse	ervers for	rotor po	sition	sensing-	CO3			
volt- ampere requi	irements- Applications				_		_				
UNIT-IV	Permanent Magnet Brushless D	C Motor	•				Periods:	09			
Commutation in I operation- Constr sensors and sensor	DC motors– Difference between me uction–drive circuits–Torque and o r less systems– controllers and appli	chanical emf equa ications.	and electronation— To	etronic co orque and	mmutato d Speed	rs– Prin charact	nciple of eristics–	CO4			
UNIT-V	Permanent Magnet Synchronou	s Motor					Periods:	09			
Principles of open and emf equation construction, char	and emf equations-vector controllers- applications. Doubly Fed Induction Generator-Principle – CO5 construction, characteristics and applications.										
Total Contact He	ours: 45 Tutorial Hours:00	I	Practical	Hours:	00	To	tal Hours:	45			
Reference Book:		I				-					
1.Venkataratnam 2. P.P. Acarnley, S 3. A. Hughes, Elec 4. R.Krishnan, Elec 5. R.K. Raiput, Elec	 Venkataratnam K, Special Electrical Machines, Universities Press, Hyderabad, 3rd Edition 2009. P.P. Acarnley, Stepping Motors, A Guide to Modern theory and practice, Peter Peregrines, London, 2002. A. Hughes, Electric Motors and Drives, Affiliated East-West Press Pvt., Ltd., 2007 R.Krishnan, Electric Motor Drives Modeling, Analysis, and Control, Prentice Hall of India R.K.Raiput, Electrical Machines, Laxmi Publications, New Delhi, 2009 										

5. R.K.Rajput, Electrical Machines, Laxmi Publications, New Delhi, 20096. K.Dhayalini, Special Electrical Machines, Anuradha Publications 2007.

COs	COs Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	-	-	-	-	-	-	-	1	2	-
CO2	3	3	2	-	-	-	-	-	-	-	-	1	2	-
CO3	3	3	2	-	-	-	-	-	-	-	-	1	2	-
CO4	3	2	2	-	-	-	-	-	-	-	-	1	2	-
CO5	3	3	2	-	-	-	-	-	-	-	-	1	2	-
AV	3	2.8	2	-	-	-	-	-	-	-	-	1	2	-

Department: Elect	rical and Electronics Engineering	eering Programme: B.Tech., (EE)						
Semester: SIXTH		Subject	Catego	ry: PEC	Se	mester I	Exam Type	TY
Course Code	Course	Pe	riod / W	eek	Credit	Ma	aximum M	arks
Course Code	Course	L	Т	Р	C	CA	SE	TM
EEA204	Digital Signal Processing	3	-	-	3	25	75	100
Prerequisite	Fourier transforms							
Course Outcome	Course Ou	utcome S	tatement	;			Lev	el
CO1	Analyze the classifications of sign	als and s	ystems i	n the time	e domain	s.	Anal	yse
CO2	Analyze the discrete-time systems	using Z-	- transfo	rm			Anal	yse
CO3	Apply FFT algorithm for computing	ng DFT o	of discre	te signal			App	oly
CO4	Design suitable digital FIR filter for	or the red	quired sp	pecification	ons		App	oly
C05	Analyse the different realization r word length effects.	nethods	for FIR	and IIR f	ilters and	l finite	Anal	yse
UNIT-I Dis	screte Time Signals and Systems						Periods:	09
Basic elements of	signal processing-Sampling of anal	og signa	ls–aliasi	ng–standa	ard discre	ete time	signals -	
classification of d	iscrete time signals-manipulations	on discre	ete time	signals-	represent	ation of	f discrete	CO1
time signals. Di	screte time systems-properties-Li	near Ti	me Inv	ariant sy	stems-co	onvolutio	on sum-	COI
properties of LTI s	systems-difference equation represe	ntation.						
UNIT-II Dis	screte Time System Analysis	2	-				Periods:	09
Z-transform_regio	n of convergence – properties	of z-tra	anstorm	s- invers	e z-tran	storm-d	ifference	GOA
equation-solution	by z-transform- application to disc	rete syste	ems-inte	rpretation	of stabil	ity in z	domain -	CO2
stability analysis-	convolution.						D ' 1	00
UNIT-III DF	I and FFI	1 4		<u>C</u> 1	DET E		Periods:	09
Discrete Fourier I	ransform-properties - relationship	between	z- trans	form and	DFI-Fre	equency	analysis	CO3
Decimation In Tin	Participation In Frequency Comp	tation of	f IDFT 1	liation of	DFI –ra	dix2 alg	goriums-	COS
UNIT-IV De	sign of Digital Filters				•		Periods	09
FIR filter design	-linear phase FIR filters- Fourier	r series	method	-windowi	ng tech	niques_f	requency	
Sampling techniqu	ues. IIR filter design- analog filter d	lesign-B	utterwor	th and Cl	iebvshev	approx	imations-	
digital filter design	n using impulse invariant technique	e and bili	inear tra	nsformati	on metho	od -war	oing, pre-	CO4
warping-Frequenc	y transformation.					1	\mathcal{O}	
UNIT-V Fil	ter Implementation and Finite Wo	ord Leng	gth Effe	cts			Periods:	09
Structures for FIR	systems-direct form, cascade and	linear p	hase str	uctures-st	ructures	for IIR	systems-	
direct form, para	llel, cascade and ladder structure	s- Repre	esentatio	on of nu	mbers-er	rors res	ulting in	COS
rounding and true	ncation quantization of filter coef	ficients-	round o	ff effects	in digi	tal filter	r-product	05
quantization error,	overflow limit cycle oscillations.				_		-	
Total Contact H	Iours: 45 Tutorial Hours: 0	0	Practic	al Hours	: 00	То	tal Hours	:45
Reference Book:								
1. John G. Proakis	s and Dimitris G. Manolakis, "Digita	al Signal	Process	ing: Princ	iples, Al	gorithm	s, and	
Applications", l	PHI Learning, New Delhi, Fourth E	dition, 20	008.					
2. Alan V. Oppenl	heim and W. Schafer, "Discrete Tim	ne Signal	Process	ing", Pre	ntice Hal	l of Indi	a Pvt. Ltd.	, 2001
3. Rabiner and Go	old, "Theory and Applications of Dig	gital Sigr	nal Proce	essing", P	rentice H	lall of Ir	ndia Pvt. L	td.,
2001.		-	. .					
4. SanjitK.Mitra, '	[•] Digital Signal Processing: A Comp	outer Bas	ed Appr	oach", Ta	ta McGr	aw–Hill	, Third Ed	ition,
2005.	General Demis W. Lemis "D'	-1 C 1	Danse				C	
5. Emmanuel C. If	teacnor and Barrie W. Jervis, "Digit	al Signal	Process	sing ² , Pea	rson Edu	ication,	Second Ed	ition,
6 D Ramash Dah	u "Digital Signal Processing" Sait	och Dubli	cations	Fourth E	dition 20	07		
	u, Digital Signal i locessing, Self		cations,	rourui E	uni011, 20			

COs	Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	-	-	-	-	-	-	-	-	1	1	-
CO2	2	3	1	-	-	-	-	-	-	-	-	1	1	-
CO3	2	3	1	-	-	-	-	-	-	-	-	1	1	-
CO4	2	3	1	-	-	-	-	-	-	-	-	1	1	-
CO5	2	3	1	-	-	-	-	-	-	-	-	1	1	-
AV	2	3	1	-	-	-	-	-	-	-	-	1	1	-

Department: Elec	trical and Electronics Engine	ering	ing Programme: B.Tech., (EE)							
Semester:SIXTH			Subject	t Categoi	y: PEC	Ser	nester I	Exam Type	e: TY	
Course Code	Course		Pe	riod / W	eek	Credit	Ma	aximum M	arks	
	Course		L	Т	Р	C	CA	SE	TM	
EEA205	Fuzzy Logic and Neural Networks		3	-	-	3	25	75	100	
Prerequisite	Set theory & Control syste	ems								
Course Outcome	С	ourse O	utcome S	tatement				Lev	el	
CO1	Discus the fundamental co	oncepts o	of Fuzzy	logic				Under	stand	
CO2	Outline the fuzzy relat	ions, ru 1ce syste	les and ms for fu	inferen izzy moo	ce mech lelling an	anism a d control	nd to	Under	stand	
CO3	Interpret the basic concep	ts in Net	ural Netv	vorks and	d applicat	ions		Understand		
CO4	Interpret associative and learning algorithms	compe	titive ne	ural net	work arc	hitecture	s and	Under	stand	
CO5	Design Fuzzy Logic and M	Neural N	letwork a	pplicatio	ons.			App	oly	
UNIT-I In	troduction to Fuzzy Logic	Princip	les					Periods:	09	
Introduction to ne Membership, fund	efinition	s and Ter	minolog	y-set op	erations.	CO1				
complement Fuzzy relations Fuzzy if then rules Fuzzy Reasoning								uon anu	COI	
UNIT-II Fu				Periods	09					
Fuzzy Inference systems, Mamdami Fuzzy models, Sugeno Fuzzy models, Tsukamato Fuzzy r								models	07	
Input space parti	tioning-Brief description of	f Grid p	artition.	Tree pa	rtition an	d scatter	partiti	on. Data	CO2	
clustering techniq	ues-Fuzzy k means and c-m	eans clu	stering. 1	Fuzzy mo	odelling.		1			
UNIT-III In	troduction to Artificial Ne	ural Net	tworks					Periods:	09	
Fundamentals of	Neural Networks -Compa	rison of	a biolo	gical ne	uron and	compute	er. Mod	lel of an		
Artificial Neuron	– Neural Network Arch	itectures	– Lear	ning Me	ethods. P	erceptror	ı learni	ng rule-	CO3	
limitations. Mult	ilayer Perceptron- Back I	Propagat	tion Alg	orithms-	- Variant	s of Ba	ck Pro	pagation	COJ	
Algorithms. RBF	networks									
UNIT-IV Ot	her ANN Architectures							Periods:	09	
Types of Associa	ative Memories –Bidirectio	onal Ass	sociative	Memor	ies – Au	to Assoc	ciative	Memory:		
Architecture, Alg	orithm and properties. Unsu	pervised	l learning	g- Neura	l Networl	ks Based	On Co	mpetition	CO4	
–Maxnet. Kohone	ns Self Organizing Maps, L	earning	Vector Q	Juantizat	ion.					
UNIT-V Re	cent Advances and Applic	ations						Periods:	09	
Neuro Fuzzy Mc	delling- ANFIS architectur	re- algoi	rithm. Fi	uzzy cor	ntrol syst	ems desi	gn- Fuz	zzy logic	GO .	
controllers. Neur	al Networks for Modellin	ng. Fun	damenta	ls of G	enetic A	Igorithm	s– Ant	Colony	C05	
Optimization – Pa	Tricle Swarm Optimization.	Γ		D	. 1 TT	00	Τ.	4 - 1 TT	. 45	
I otal Contact F	iours: 45 iutorial H	iours:00)	Practica	al Hours:	00	10	tal Hours	:45	
1 Timesther L Dec	· ····································			···· ~? \ \ (-	Carry II:1	1 Essentia	- 1:4:	2016		
1. Timotny J. Ros	s, Fuzzy Logic with Engin	1 Europe	and Soft	Ons, MC	Graw Hil	I, Fourin	edition	2010		
2. J.S.K. Jang, C.	I. Sull, E. Mizutalli, Neura	i ruzzy i ioo Holl	Edition (2000	ing – A co	Sinputatio	лаг Ар	proach to		
3 Martin T Hage	m Howard R Demuth and	Mark R	eale Nei	2002 1ral Netu	vork Desi	an _Thor	nson la	arning Sa	bond	
Edition 2002	in, nowara D. Domun and	TATULK D			JUK DUSI	511 1101	115011 10	uning, 50	20114	
4. Laurene Fauset	t. Fundamentals of Neural N	Network	architect	tures alo	orithm ar	nd applies	ation P	earson Edi	ication	
2004.	,			,	, u		, -			

5. Xin-she-Yang, "Nature Inspired metaheuristic Algorithms", Second Edition, Luniver Press, 2010

6. Gen, M. And Cheng R. "Genetic Algorithm And Engineering Design", John Wiley 1997

COs	Program Outcomes (POs)										Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO3	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO4	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO5	3	2	1	-	-	-	-	-	-	-	-	1	1	-
AV	3	2.8	1	-	-	-	-	-	-	-	-	1	1	-

Department: Elect	rical and Electronics Engineering	Programme: B.Tech., (EE)								
Semester:SIXTH		Subject Category: PEC Semester Exam Type								
Course Code	Course	Pe	riod / W	eek	Credit	Ma	ximum M	arks		
	Course	L	Т	Р	C	CA	SE	TM		
EEA206	Modern Control Theory	3	-	-	3	25	75	100		
Prerequisite	Linear Control System course (IV	Semeste	r).							
Course Outcome	Course O	utcome S	tatement				Lev	el		
CO1	Describe the mathematical concepts required for the analysis of dynamical systems modelled in state-space approach.									
CO2	Illustrate the philosophy of modelling of dynamical systems in state-space.UnderstarKnowledge of varied forms of mathematical model of dynamic systems.Understar									
CO3	Explain the various attributes of a dynamical system like stability, Understation U									
CO4	Identify asymptotic stability of linear and nonlinear systems using Understa Lyapunov-Krasovakii approach.									
CO5	Synthesize state-feedback controllers for stabilization of unstable or poorly stable system.									
UNIT-I Ma	athematical Fundamentals for Sys	stems Th	eory				Periods:	09		
Vectors and vector	r spaces – linear dependence and in	depender	nce of ve	ectors – ba	asis and s	pan – cl	nange of			
basis – inner pro	duct, outer product and cross prod	duct of t	wo vect	tors – not	rms – or	thogona	lity and			
orthonormality of	two vectors - linear operation of ve	ctors.								
Matrix properties – rank, trace, inverse, eigen values, eigen vectors, symmetricity, Hermitian matrix –										
diagonalization of a matrix – singular values. Quadratic functions – definiteness of a matrix – Caley-										
Hamilton theorem and computation of arbitrary matrix functions using Caley-Hamilton theorem.										
Linearity and time	e-invariance (LTI) – Linearization of	f nonline	ar functi	on using '	Taylor se	ries exp	ansion.			
UNIT-II Mo	odelling of Dynamical Systems in S	State-spa	ace				Periods:	09		
Modelling of physical systems using state-space approach – advantages of state-space approach over transfer function approach. State-space model using physical variable approach for SISO and MIMO systems and phase variable approaches for SISO systems. Development of linear state-space models for nonlinear systems using Taylor series approach. State diagram, state space and state-trajectory. Canonical forms of state-space models for SISO LTI system: controllable, observable canonical forms and diagonal/Jordan's diagonal canonical forms – realization schematic. Similarity transformation of a given system into different canonical forms										
UNIT-III An	alysis of Dynamical Systems						Periods:	09		
Solution of LTI state-equation – state-transition matrix – properties and computational techniques (Laplace transform technique and infinite series method, and similarity transformation approach). Computation of state transition matrix using Caley-Hamilton Theorem and Sylvester interpolation formula. Controllability and Observability – Tests (Kalman's test and Popov-Belavich-Hautus test) – Duality property – stabilizability and detectability properties.										
UNIT-IV Sta	ability Analysis						Periods:	09		
Equilibrium point of linear and nonlinear systems – Internal and BIBO stability. Nonlinear state-space equations - Stability in the sense of Lyapunov for nonlinear systems - Lyapunov and Krasovskii stability theorems. Lyapunov stability criterion for LTI systems (including LTI affine systems as well). Parametric optimization using quadratic cost function for LTI systems										

UNIT-V Synthesis of Controllers – Observer based and Optimal Controller Periods										
State-feedback control design: Introduction – relationship between pole location in <i>s</i> plane and system										
performance – control specifications – choice of desired closed loop poles based on dominant pole pair										
approach from controller specifications – regulation and reference tracking problems.										
State feedback control – necessary and sufficient condition – computational techniques of state-feedback										
gain matrix (d	lirect substitution	n, using similarity transforma	ation and Ackermann's formu	la).	CO5					
State estimati	ion – Observer d	lesign - necessary and suffi	cient condition - computation	nal techniques of	05					
observer gain matrix (direct substitution, using similarity transformation and Ackermann's formula) –										
Observer-based state-feedback control – separation principle - minimum order observer.										
Design of Servo systems – State-feedback control with integral error compensation. Optimal control:										
design of state feedback control using LQR approach.										
Total Conta	act Hours: 45	Tutorial Hours:00	Practical Hours: 00	Total Hours	:45					
Reference B	ook:									
1. Katsuhiko Ogata, "Modern Control Engineering", Fifth Edition, Prentice Hall, 2010.										
2. I J Nagrath and M. Gopal, "Control Systems Engineering", New Age International (P) Limited, 2008.										
3. Norman S Nise, "Control Systems Engineering", 7th Edition, Wiley, 2015.										
4. Gene F. Franklin, J. David Powell and Abbas Emami-Naeini, "Feedback Control of Dynamic Systems", 8th										
4. Gene F. Fr	anklin, J. David	Powell and Abbas Emami-N	aeini, "Feedback Control of I	Dynamic Systems",	8 th					
4. Gene F. Fr Edition, Pe	anklin, J. David arson, 2018.	Powell and Abbas Emami-N	aeini, "Feedback Control of I	Dynamic Systems",	8 th					
4. Gene F. Fr Edition, Pe 5. BiswaNath	anklin, J. David earson, 2018. 1 Datta, "Numeri	Powell and Abbas Emami-N	aeini, "Feedback Control of I rol Systems: Design and Anal	Dynamic Systems", ysis", Elsevier, 200	8 th 04.					
 Gene F. Fr Edition, Pe BiswaNath John S Bay 	anklin, J. David earson, 2018. 1 Datta, "Numeri 7, "Fundamentals	Powell and Abbas Emami-N cal Methods for Linear Contr of Linear State Space Syste	aeini, "Feedback Control of I rol Systems: Design and Anal ms", McGraw-Hill Series in I	Dynamic Systems", ysis", Elsevier, 200 Electrical Engineeri	8 th 04. ng,					

COs	Program Outcomes (POs)										Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	-	-	-	-	-	-	-	1	2	2
CO2	3	3	1	1	-	-	-	-	-	-	-	1	2	2
CO3	3	3	1	1	-	-	-	-	-	-	-	1	2	2
CO4	3	3	1	1	-	-	-	-	-	-	-	1	2	2
CO5	3	3	1	1	-	-	-	-	-	-	-	1	2	2
AV	3	3	1	1	-	-	-	-	-	-	-	1	2	2

Department: Elec	ctrical and Ele	ectronics Engineering	Programme: B.Tech., (EE)							
Semester: SIXT	H		Subject	t Categor	nester E	Exam Type: TY				
Course Code		Course	Pe	riod / W	eek	Credit	Ma	aximum M	larks	
Course Code	L T P C CA				CA	SE	TM			
EEA207	Electric a	nd Hybrid Vehicles	3	-	-	3	25	75	100	
Prerequisite	Basic Elec	trical and Electronics E	ngineerii	ng						
Course Outcome		Course Or	utcome S	tatement				Lev	/el	
CO1	Outline the	e basics of vehicle dyna	mics.					Under	stand	
CO2	Choose pro	oper energy storage syst	tems for	vehicle a	pplication	ns.		App	oly	
CO3	Identify su	itable drive scheme for	electric a	and hybr	id vehicle	es.		App	oly	
CO4	Design and	d develop basic schemes	s of elect	ric vehic	les.			Apply		
CO5	Design and	d develop basic schemes	s of hybr	id electri	c vehicle	s.		App	oly	
UNIT-I Ir	troduction							Periods:	09	
History of hybri	d and electri	c vehicles - social and	environ	mental i	mportanc	e of hyb	orid and	l electric		
vehicles - impac	t of modern of	drive-trains on energy s	supplies	- Fundaı	mentals o	f vehicle	propul	sion and	CO1	
Braking: Dyna	nic Equatio	on-Vehicle Power Pl	lant an	d Trans	smission	Charac	teristics	-Vehicle	COI	
Performance- Bra	aking Perforn	nance.								
UNIT-II Battery and Alternative energy sources for EV/HEV Periods: 09									09	
Battery Types- Parameters-Technical characteristics - modeling - Fuel cells -Types-Fuel cell electric										
vehicle-super cap	acitors- ultra	capacitors.							02	
UNIT-III E	lectric propu	llsion system						Periods:	09	
Electric drives u	sed in EV/H	EV: Induction motor d	lrives-DO	C motor	drives- F	Permanen	t magn	et motor	CO3	
drives - their Cor	figuration-Co	ontrol and Applications	in EV/H	EV					000	
UNIT-IV E	lectric Vehic	les (EV)						Periods:	09	
Components of I	EV - advantag	ges - EV transmission o	configura	tion: Tra	ansmissio	n compo	nents-g	ear ratio-	CO4	
EV motor sizing-	EV market.									
UNIT-V H	ybrid Electr	ic Vehicles (HEV)						Periods:	<u>09</u>	
Classification- S	eries and Pa	rallel HEVs-Advantage	es & disa	advantag	es - Seri	es-Parall	el Com	bination-		
Internal Combus	Internal Combustion Engines: Reciprocating Engines- Gas Turbine Engine- Design of an HEV: Hybrid CO5									
Drive train- Sizing of Components.										
Total Contact Hours: 45Tutorial Hours: 00Practical Hours: 00Total Hours:									:45	
Reference Book	•									
1. Iqbal Hussain,	"Electric &]	Hybrid Vehicles – Desig	gn Funda	imentals'	', Second	Edition,	CRC P1	ress, 2011.	•	
2. Liu, Wei. "Int	roduction to h	ybrid vehicle system m	odeling	and contr	rol". John	Wiley 8	z Sons, 2	2015.	. ~	
3. Mehrdad Ehsa	nı, Yımın Ga	o, sebastien E. Gay and	Alı Ema	ıdı, "Moo	dern Elec	tric, Hyb	rıd Elec	tric and Fi	lel Cell	
Vehicles: Funda	mentals, The	ory and Design", CRC I	Press, 20	09.	1		•			
4. Mi, Chris, and M. AbulMasrur. Hybrid electric vehicles: principles and applications with practical perspectives.										

John Wiley & Sons, 2017. 5. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003. 6. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes, Elsevier Publications 2001.
COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO											PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO3	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO4	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO5	3 2 1												1	-
AV	3	2.8	1	-	-	-	-	-	-	-	-	1	1	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)									
Semester:SIXTH			Subject	t Categor	y: PEC	Se	mester l	Exam Type	e: TY
Course Code		Course	Pe	riod / W	eek	Credit	Ma	aximum M	larks
		Course	L	Т	Р	C	CA	SE	TM
EEA208	Optimizat	tion Techniques	3	-	-	3	25	75	100
Prerequisite	Differentia	al equations, Integral cal	lculus, V	ector alg	ebra and	Matrix a	nalysis		
Course Outcome		Course Ou	utcome S	tatement				Lev	vel
CO1	Describe t	he classical optimization	n techniq	ues				Under	stand
CO2	Explain ba	sic concepts of linear pr	rogramm	ing				Under	stand
CO3	Explain th	e unconstrained nonline	ar progra	amming				Under	stand
CO4	Explain th	e constrained nonlinear	program	ming				Under	stand
CO5	Describe t	he dynamic programmir	ng metho	d				Under	stand
UNIT-I Cla	ssical optir	nization Techniques						Periods:	09
Statement of opt	imization	problem – classificati	on of	optimiza	tion prol	olem -	Single	variable	
optimization – mu	ltivariable of	optimization without co	onstraints	– multi	variable o	optimizat	tion wit	h equlity	CO1
constraints – solut	ion by Lagr	ange multipliers – mult	ivariable	optimiz	ation with	h inequa	lity con	straints –	COI
Kuhn-Tucker cond	litions.								
UNIT-II Lin	iear Progra	mming						Periods:	09
Introduction – fo	ormulation	of linear programmin	ng prob	lem-grap	hical me	ethod fo	or two	variable	
optimization probl	ems-Motiv	ation of the Simplex m	ethod-so	lving LF	PP using	simplex	algorith	m – two	CO2
phase simplex met	hod- Dual S	Simplex Method.							
UNIT-III Un	constrained	l nonlinear programm	ing					Periods:	09
One dimensional 1	ninimizatio	n - Elimination method	ls: Fibon	acci and	Golden s	section s	earch -	Gradient	CO3
methods - Steepest	t descent me	ethod – Newton's metho	od.						
UNIT-IV Co	nstrained N	on Linear Programmi	ing					Periods:	09
Characteristics of	a constrain	ed problem – classifica	tion - bas	asic appi	roach of j	penalty f	function	method-	~~ .
basic approaches of	of interior a	nd exterior penalty func	ction met	hod – La	agrange n	nultiplier	s - Con	vergence	CO4
of constrained opti	mization pr	oblems.							
UNIT-V Dynamic Programming Periods: 09									
Multi stage deci	sion proce	esses-Concept of sub-	-optimiza	ation an	id the p	orinciple	of op	otimality–	~~-
computational pro	cedure in dy	ynamic programming–C	Conversio	on of fina	al value p	roblem	in to Ini	tial value	CO5
problem-continuou	is dynamic	programming.		D					
Total Contact H	ours: 45	Tutorial Hours:00)	Practica	al Hours:	00	To	tal Hours	:45
Reference Book:									
1. S.S. Rao, "Engi	neering Opt	imization; Theory and I	ractice"	, Revised	a 3rd Edit	ion, Nev	v Age Ir	nternationa	.1
Publishers, New I	Jelhi, 2013		י ת	11 T1 CT	2000				
2. Hillier and Lieb	erman "Intr	oduction to Operations	Kesearch	n´, IMH	, 2000.				
3. K. Panneerselva	im, "Operati	ions Research", PHI, 20	06						

4. Hamdy A Taha, "Operations Research – An Introduction", Prentice Hall India, 2003.

5. Philips, Ravindran and Solberg, "Operations Research", John Wiley, 2002.

6. Ronald L. Rardin, "Optimization in Operation Research" Pearson Education Pvt. Ltd. New Delhi, 2005.

COs		Program Outcomes (POs)												gram cific omes Os)
	PO1	PO2	PO12	PSO1	PSO2									
CO1	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO3	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO4	3	2	1	-	-	-	-	-	-	-	-	1	1	-
CO5	3	3 2 1												-
AV	3	2.6	1	-	-	-	-	-	-	-	-	1	1	-

PROFESSIONAL ELECTIVE (VII SEMESTER)

Semester:SEVENTHCourse CodeEEA209EEA209SmailPrerequisiteCourse OutcomeCO1DescrCO2ExplainCO3IdentCO4Explain	Course	Subject Pe L	t Categor riod / W	y: PEC	Ser	nester I	Exam Type	e: TY						
Course CodeEEA209SmarPrerequisiteCourse OutcomeCO1DescrCO2ExplaCO3IdentCO4Expla	Course rt Grid	Pe L 3	riod / W	eek	Semester: SEVENTH Subject Category: PEC Semester Exam Type: TY									
Course CodeEEA209SmailPrerequisiteCourse OutcomeCO1DescrCO2ExplainCO3IdentCO4Explain	rt Grid	L												
EEA209SmallPrerequisiteCourse OutcomeCO1Desc:CO2ExplaCO3IdentCO4Expla	rt Grid	Smart Grid 3 3 25 75												
PrerequisiteCourse OutcomeCO1CO2ExplaCO3IdentCO4Expla		5	-	-	3	25	75	100						
Course OutcomeCO1DesciCO2ExplaCO3IdentCO4Expla			1	1										
CO1Desc.CO2ExplaCO3IdentCO4Expla	Course Ou	itcome S	tatement				Lev	/el						
CO2ExplaCO3IdentCO4Explathe or	ribe the benefits of smart grid	l in powe	er system	IS.			Under	stand						
CO3 Ident CO4 Expla	ain rationale for smart grid tee	chnology	and its	character	istics.		Under	stand						
CO4 Expla	ify and discuss smart meterin	g device	s and ass	sociated to	echnologi	ies.	App	oly						
	ain about communication an peration of the entire electrica	d contro al grid.	ol capabi	lities that	t will opt	timize	Under	stand						
CO5 Discu	is the application of Smart gr	id in the	field of	power sys	stems.		Under	stand						
UNIT-I Intro	duction to Smart Grid						Periods:	09						
Evolution of Electric Grid-Need for smart grid- Difference between conventional & smart grid -														
Overview of enabling technologies-International experience in smart grid deployment efforts-Smart CO														
grid road map for INDIA- smart grid architecture.														
UNIT-IIWide Area Monitoring SystemPeriods: 09														
Fundamentals of synchr	o phasor technology – conce	ept and l	benefits	of wide a	area moni	itoring	system-							
Structure and functions	of Phasor Measuring Unit (H	PMU) an	d Phason	r Data Co	oncentrate	or (PDC	C)–Road	CO^{2}						
Map for synchro phaso	r applications (NAPSI)-Ope	erational	experier	nce and	Blackout	analys	is using	02						
PMU.														
UNIT-III Smar	rt Meters						Periods:	09						
Features and functions of	of smart meters- Functional s	specifica	tion-cate	egory of s	smart me	ters– A	MR and							
AMI drivers and benefit	its– AMI protocol– Demano	d Side I	ntegratio	n-Peak l	oad, Outa	age and	l Power	CO3						
Quality management.														
UNIT-IV Infor	mation and Communicatio	n Techn	ology				Periods:	09						
Overview of smart grid	l communication system- N	Aodulatio	on and 1	Demodul	ation tecl	hniques	- Radio							
communication–Mobile	communication-Power line	commu	nication-	- Optical	fibre co	mmuni	cation –	CO4						
Communication protocol	for smart grid.													
UNIT-V Smar	rt Grid Applications						Periods:	09						
Overview and concept o	f renewable integration – role	e of prot	ective re	laying in	smart gri	id– Hou	ise Area	~~~						
Network– Advanced En	ergy Storage Technology - I	Flow bat	ttery– Fu	iel cell–S	MES–Su	per cap	acitors-	CO5						
Plug-in Hybrid electric	Vehicles-Cyber Security req	urement	ts-Smart	grid info	rmation r	nodel.	1.11							
Total Contact Hours: 4	5 Tutorial Hours:00		ractical	Hours:	00	Tot	al Hours:	45						
Reference Book:			1		1 7 1 .	~	1							
I. Janaka Ekanayake, Ki	thsiri Liyanage, Jianzhong W	$u, Ak_{1h_{1}}$	ko Yoko	yama, Ni	ck Jenkin	is, Smai	rt Grid							
Technology and Appli	cations, John Wiley & Sons J	Publicati	on, 2012	т.1.		1 2010								
2. James Momoh, Smart	Grid Fundamentals of Design	n and An	ialysis, V	viley Indi	a Pvt. Lto	1., 2018) D-4 T41	2014						
5. Krzysztoi iniewski, Si	nari Grid Infrastructure and f	networki	ing, MCC	maw Hill	Educatio	n (India) PVt. Ltd	., 2014. Decas						
4. reretución. P. Siosnans	si, sinari griu – integrating re	newable	, aistridu	neu anu e	incient e	nergy A		riess,						
1. Janaka Ekanayake, Ki Technology and Appli 2. James Momoh, Smart	thsiri Liyanage, Jianzhong W cations, John Wiley & Sons I Grid Fundamentals of Design	['] u, Akihi Publicati n and An	ko Yoko on, 2012 alysis, W	yama, Ni Viley Indi	ck Jenkin a Pvt. Lto	ıs, Smaı 1., 2018	t Grid							

5. Stuart Borlase, Smart Grids: Infrastructure, Technology and Solutions, CRC Press Publication, 2013.

6. Smart Grid Primer, Published by Power Grid Corporation of India Limited, September 2013.

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)	
	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO												PSO2
CO1	2	2	1	-	-	-	-	-	-	-	-	1	1	-
CO2	2	2	1	-	-	-	-	-	-	-	-	1	1	-
CO3	2	2	1	-	-	-	-	-	-	-	-	1	1	-
CO4	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1	1	-
CO5	2 2 1 1											1	1	-
AV	2	2	1	-	-	-	-	-	-	-	-	1	1	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)											
Semester: SEVEN	TH	Subject	t Categoi	ry: PEC	Ser	nester I	Exam Typ	e: TY			
Course Code	Course	Pe	eriod / W	eek	Credit	Ma	aximum M	larks			
Course Code	Course	L	Т	Р	C	CA	SE	TM			
EEA210	Renewable Energy	3	-	-	3	25	75	100			
Prerequisite	Basics of power generation and er	nergy res	ources								
Objective	Renewable energy would provid	le the kn	nowledge	for the	deploym	ent of	renewable	e energy			
Objective	sources which are the prime factor	r for sust	ainable d	levelopm	ent.						
Course Outcome	Course O	utcome S	tatement				Lev	vel			
CO1	Examine various conventional and	d renewa	ble energ	gy sources	5.		Арј	ply			
CO2	Develop solar PV system for diffe	erent app	lications.	•			Арј	ply			
CO3	Demonstrate the working princi converters used for wind energy c	ples of onversio	electrica n system	l machin	les and j	power	Ana	lyse			
CO4	Discus Geothermal and ocean ene	rgy powe	er plants.				Under	stand			
CO5	Explain Bio energy system and re	lated issu	ies.				Under	stand			
UNIT-I	General Aspects						Periods:	09			
Trends in energy scenario- Energy sources and their availability- Commercial energy production- Final											
energy consumption- Indian energy scenario- Energy conservation and its importance- Salient features CO											
of the energy cons	servation act, 2001 - Concept of new	, and rene	ewable e	nergy.							
UNIT-II Solar Energy Periods: 09											
Fundamentals of	solar energy- Solar radiation - So	lar thern	nal syste	ms- Prin	ciple and	l types	of solar				
collector -Solar v	vater heater- Solar Photovoltaic S	ystems:	Solar ce	lls and th	neir chara	acteristi	cs - PV	CO2			
arrays - Solar PV	System - Concentrated Solar PV sys	stems.									
UNIT-III	Wind Energy						Periods:	09			
Nature and Powe	er in the wind - Wind Energy	Conversi	on Syste	em (WE	CS) - Co	ompone	ents and				
Classification of a	WECS - Yaw and Pitch Control	- Wind T	Furbines	- Types ·	- Horizon	ital and	vertical	CO3			
axis wind turbines	- Generators for WECS.										
UNIT-IV	Miscellaneous Sources					~	Periods:	09			
Energy from tides	s and waves - working Principle of	tidal pla	ants - tid	lal power	generati	on -Geo	othermal	CO4			
energy - principle	of working geothermal power plant	ts-Magne	eto Hydro	o Dynami	c System	.s.	D • 1	00			
UNIT-V	Bio Energy	D.		с:	D'	D.	Periods:	09			
Bio-mass resource	es - Biofuels- Biochemical conversion	on-Bion	nass gasi	fication $-$	Biogas -	Biogas	plants -	CO5			
Energy recovery I	rom urban waste- Power generation	1 Irom Iic	luid wasi	e- Bioma	ss Cogen	eration.		. 4.5			
I otal Contact He	ours: 45 Tutorial Hours:00		Practical	Hours:	00	101	al Hours:	:45			
1 D.D. Kathari V	C. Singel Beltach Banian "Banay	valala Eng	Corr	mana and I	Inconcina	Tasha	lacias" I				
I. D.P. Koulari, K	.C. Singal, Rakesh Ranjan, Renew	able Ene	rgy Soul	rees and r	merging	Techno	blogles, r	ΠI			
2 Khan B H "No	n-Conventional Energy Resources"	Tata M	cGraw-F	III New	Delhi 20 [°]	10					
2. Khan D II, NO 3. Mukund R Pate	1 "Wind and Solar Power Systems"	$^{\circ}$ CRC P	ress Nev	w Vork 2	011	10					
4. Solanki, Chetar	Singh, "Solar Photovoltaics - Fun	, ence i damental	ls. Techn	$\frac{1}{100}$	nd Annlia	cations"	. PHL Net	w			
Delhi. 2015.			,				, ,				
5. Bhadra S N. Ba	nerjee S, Kastha D, "Wind Electric	al Systen	ns", Oxfo	ord Unive	rsity Pres	ss, New	Delhi, 20	08			
		,	1 1 . 1	2002	5 • •	,	, •	-			

6. G.D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, 2003.7. Roger A. Messenger, "Photovoltaic Systems Engineering", CRC Press, New York, 2010.

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)	
	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO												PSO2
CO1	3	2	1	-	-	-	-	-	-	-	-	2	3	2
CO2	3	2	1	-	-	1	3	-	-	-	-	2	3	2
CO3	3	2	1	-	-	1	3	-	-	-	-	2	3	2
CO4	3	2	1	-	-	1	3	-	-	-	-	2	3	2
CO5	3 2 1 1 3 2											2	3	2
AV	3	2	1	-	-	0.8	2.6	-	-	-	-	2	3	2

Department: Elect	rical and Electronics Engineering	Programme: B.Tech., (EE)								
Semester:SEVEN	TH	Subject	t Categoi	ry: PEC	Sei	nester l	Exam Type	e: TY		
Course Code	Course	Pe	eriod / W	eek	Credit	Ma	aximum M	larks		
		L	Т	Р	С	CA	SE	TM		
EEA211	Embedded Systems	3	-	-	3	25	75	100		
Prerequisite	Microprocessors and microcontrol	llers								
Course Outcome	Course Or	utcome S	tatement				Lev	vel		
C01	Explain the hardware functiona develop various Embedded system	al and s ns.	software	strategie	es requir	ed to	Under	stand		
CO2	Interpret the basic knowledge Communication in processors	e of en	nbedded	network	ting and	l bus	Under	stand		
CO3	Utilize various Embedded system	Develop	ment Str	ategies			Арр	oly		
CO4	Explain the basic concepts of processor scheduling algorithms	real tim	e operat	ing syste	em on v	arious	Under	stand		
CO5	Apply various embedded concepts	s for dev	eloping a	utomatio	n applica	tions	App	oly		
UNIT-I	Introduction to Embedded Syste	ems					Periods:	09		
Introduction to En	nbedded Systems -Structural units	in Emb	edded pr	ocessor, s	selection	of proc	cessor &			
memory devices-	DMA – Memory management m	nethods-	Timer a	ind Coun	ting dev	ices, W	atchdog	CO1		
Timer, Real Time	Clock, In circuit emulator, Target H	Hardware	e Debugg	ging.						
UNIT-II	Embedded Networking		~				Periods:	09		
Embedded Netwo	rking: Introduction, I/O Device Po	rts & Bi	ises– Sei	rial Bus c	ommuni	cation p	protocols	GO		
RS232 standard – RS422 – RS 485 - CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated CO2										
UNIT III	Embaddad Eirmwara Davalanm	ant Fur		4			Daviada	00		
Embaddad Bradu	at Davelonment Life Cycle obje	ent Env	lifforant	nhasas o	F EDI C	Mode	ferious:	09		
Elliberated Float	Hardware-software Co-design Da	ta Flow	Graph	state ma	chine mo	, Moud del Se	auential	CO3		
Program Model c	oncurrent model object oriented m	odel	orapii,	state may		dei, se	queiniai	005		
UNIT-IV	RTOS Based Embedded System	Design					Periods:	09		
Introduction to 1	pasic concepts of RTOS- Task.	process	& three	eads, inte	errupt ro	outines.	RTOS.	• • •		
Multiprocessing a	and Multitasking, Preemptive and	non-pree	emptive	schedulin	g, Task	commu	inication	604		
shared memory, n	nessage passing-, Inter process Con	mmunica	tion -sy	nchroniza	tion betw	veen pr	ocesses-	CO4		
semaphores, Mail	box, pipes, priority inversion, priori	ty inheri	tance.			_				
UNIT-V	Embedded System Application a	and Dev	elopmen	ıt			Periods:	09		
Case Study of W	Vashing Machine- Automotive Ap	plicatior	n- Smart	Card Sy	vstem Ap	oplicatio	on-ATM	CO5		
machine – Digital camera										
Total Contact H	ours: 45 Tutorial Hours:00]	Practical	Hours:	00	Tot	tal Hours:	45		
Reference Book:										
1. Peckol, "Embed	lded system Design", John Wiley &	c Sons, 2	009	• • • •						
2. Lyla B Das," Ei	mbedded Systems-An Integrated Ap	pproach"	, Pearsor	n, 2013						
3. Shibu. K.V, "In	troduction to Embedded Systems",	McGraw	7 H1ll, 20)]/. / M.C.		n1 2				
4. Kaj Kamal, 'En	ibeauea System-Architecture, Prog	ramming	, Design	, McGra	w Hill, 20	JI3.				
6 Tommy Mooree	and "Embadded Systems Architect	ure" Ela	riess (If	iuia) PVI.	Liu, 201	5.				
7 Wayne Wolf C	and, Endedded Systems Architect	uic, Els	evier, 20	omputing	x Sustam	Decian	Morgan			
Kaufmann Publ	ishers Third reprint Harcourt India	3 2012		ompunit	5 System	Design	, worgan			
	isneis, mita reprint, mateourt muta	<i>x</i> , 2012.								

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)	
	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO											PSO1	PSO2
CO1	1	2	2	2	1	-	-	-	-	-	-	1	2	2
CO2	-	3	3	2	1	-	-	-	-	-	-	1	3	1
CO3	-	3	3	2	1	-	-	-	-	-	-	1	2	1
CO4	-	2	3	3	1	-	-	-	-	-	-	1	3	1
CO5	1	1 3 2 3 1											2	1
AV	0.4	2.6	2.6	2.4	1	-	-	-	-	-	-	1	2.4	1.2

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)										
Semester:SEVENTH Subject Category: PEC Semester Exam Type: TY										
Course Code Course	Pe	eriod / W	eek	Credit	Ma	aximum M	[arks			
	L	Т	Р	C	CA	SE	TM			
EEA212 Power Quality	3	-	-	3	25	75	100			
Prerequisite Fundamentals power system and	power ele	ectronics								
Course Outcome Course O	utcome S	tatement				Lev	vel			
CO1 Comprehend concept of Power C systems	Quality &	it's issu	les for va	rious ele	ctrical	Under	stand			
CO2 Identify the power quality problem techniques.	ms, cause	s and sug	ggest suit	able miti	gating	App	oly			
CO3 Discus the effect of over vol techniques.	tages an	d sugge	ests suita	ble miti	gating	Under	stand			
CO4 Illustrate sources of harmonics system components with reference	and und	lerstand E and IEC	their eff	ects on j ls.	power	Anal	yse			
CO5 Discuss different techniques for p	ower qua	lity mon	itoring.			Under	stand			
UNIT-I Introduction to Power Quality	<u>^</u>		<u> </u>			Periods:	09			
Terms and Definitions: overloading - under volta	ge – ove	er voltag	e. conce	pts of tra	ansients	– short				
duration variations such as interruption – long durati	on variat	ion such	as sustai	ned interr	uption.	sags and	COL			
swells – voltage sag – voltage swell – voltage imbalance – voltage fluctuation – power frequency										
variations. IEEE/IEC standards of power quality. Power Acceptability curve (CBEMA)										
UNIT-II Voltage Sags and Interruptions						Periods:	09			
Sources of sags and interruptions - estimating volt	age sag	performa	ince – an	alysis an	d calcu	lation of				
various faulted condition - voltage sag due to induct	tion moto	or starting	g- estima	tion of th	ie sag s	everity –	CO2			
mitigation of voltage sags, active series compensators	s. static tr	ansfer sv	vitches ar	nd fast tra	nsfer sv	vitches.				
UNIT-III Overvoltages						Periods:	09			
Sources of overvoltages – capacitor switching – light – surge arresters – low pass filters – power conditioner protection of transformers and cables. An introduction	tning – fe ers. lightr n of recei	erro reson ning prote nt tools fe	nance. mi ection – s or analysi	tigation of hielding	of voltag – line ar ents	ge swells rresters –	CO3			
UNIT-IV Harmonics			or unurjoi	ing trailor		Periods:	09			
Harmonic sources from commercial and industria	l loads.	locating	harmonio	sources	. Powe	r system				
response characteristics – harmonics vs transients. I and current distortion – harmonic indices – inter harn devices for controlling harmonic distortion – passive	Effect of nonics – 1 and activ	harmonio esonanco e filters.	cs – harn e. Harmo IEEE and	nonic dis nic distor l IEC stat	tortion tion eva ndards.	– voltage aluation –	CO4			
UNIT-V Power Quality Monitoring						Periods:	09			
Monitoring considerations, historical perspective of	power qu	ality me	asuring in	nstrumen	ts, pow	er quality				
measurement equipment - monitoring and diagnost	tic techni	ques for	various	power qu	uality p	roblems-	COS			
power line disturbance analyzer – harmonic / spectru	um analy	zer – flic	ker mete	rs – distu	rbance	analyser-				
Applications of expert systems for power quality mor	nitoring.									
Total Contact Hours: 45 Tutorial Hours: 0	00	Practic	al Hours	: 00	То	tal Hours	:45			
Reference Book:										
1. Roger. C. Dugan, Mark. F. McGranagham, Surya S	Santoso, l	H. Wayn	eBeaty, "	Electrica	l Power	Systems				
Quality", McGraw Hill, 2012.										
1. 7. Simona D. Dumanan Dinin Singh "Davyan Ouglity" I			-							
2. Simili P Burman, Bipin Singh, Power Quality, F	Katson bo	oks, 201	2.	0011						

3. J. Arrillaga, N.R. Watson, S. Chen, "Power System Quality Assessment", wi 4. C. Sankaran, "Power Quality", CRC Press, Taylor & Francis Group, 2017.

COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO												PSO2
CO1	2	2	1	-	-	1	1	-	-	-	-	1	1	-
CO2	2	2	1	-	-	1	1	-	-	-	-	1	1	-
CO3	2	2	1	-	-	1	1	-	-	-	-	1	1	-
CO4	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1	-
CO5	2 2 1 1 1												1	-
AV	2	2	1	-	-	1	1	-	-	-	-	1	1	-

Department: Elect	rical and Electronics Engineering	ng Programme: B.Tech., (EE)							
Semester: SEVEN	NTH	Subject	Categor	y: PEC	Ser	nester E	xam Type	e: TY	
Course Code	Course	Pe	riod / W	eek	Credit	Ma	ximum M	larks	
Course Coue	Course	L	Т	Р	C	CA	SE	TM	
EEA213	High Voltage Direct Current Transmission	3	-	-	3	25	75	100	
Prerequisite	-								
Course Outcome	Course O	utcome S	tatement				Lev	'el	
CO1	Describe the modern trends and p	lanning o	of HVDC	system.			Under	stand	
CO2	Explain the multi terminal HVDC	transmis	sion sys	tems.			App	oly	
CO3	Explicate various control strategy	used in t	he HVD	C system	•		Anal	yse	
CO4	Explain the HVDC faults and prot	tection					Apply		
CO5	Illustrate the reactive power ma HVDC systems.	nagemen	t and ha	armonics	eliminati	ion in	Anal	yse	
UNIT-I Int	roduction to High Voltage Trans	mission S	Systems				Periods:	09	
Introduction-Histo	Introduction-Historical sketch- Comparison of AC and dc Transmission -Types of HVDC Systems -								
Components of a HVDC system - Application of DC Transmission- Planning & Modern trends in D.C. CO1									
Transmission.									
UNIT-II Mu	ılti Terminal HVDC Systems						Periods:	09	
Types of MTDC	system-Comparison of series and	parallel I	MTDC s	ystem–H	VDC inst	ulation-	DC line	CON	
insulators – DC br	eakers – Characteristics and types of	of DC bre	eakers.	•				002	
UNIT-III An	alysis of HVDC Converters						Periods:	09	
Line commutated	converter; Analysis of Graetz circu	it with ar	nd without	ut overlap	–Pulse r	number-	- Choice		
of converter config	guration – Converter bridge charact	teristics-	Analysis	s of 12 pi	ilse conv	erters- A	Analysis	CO3	
of VSC topologies	and firing schemes.		-	_			-		
UNIT-IV HV	/DC Faults and Protection						Periods:	09	
Converter faults, o	commutation failure-Disturbance ca	aused by	over cur	rrent and	over Vol	tage –Pi	rotection		
against over curre	nt and over voltage-Surge arrestor	rs smooth	ning reac	tors- Co	rona effe	cts of D	C line –	CO4	
Transient over vol	tages for DC line-Protection of DC	C links.							
UNIT-VReactive Power and Harmonics in HVDCPeriods: 09									
Sources of reactiv	ve power-static VAR system-React	tive pow	er contro	ol during	transient	s– gene	ration of	COS	
harmonics–Types	and design of various AC filters, D	C filters-	-interfere	nce- telep	phone-RI	noise.		0.03	
Total Contact H	Iours: 45 Tutorial Hours:00	0	Practica	al Hours:	00	Tot	tal Hours	:45	
Reference Book:									
1. K. R. Padiyar, "	HVDC Power Transmission System	ns", New	Age Int	ernationa	l Publishe	ers; Fou	rth editior	ı, 2023.	
2. J. Arrillaga, "Hi	igh Voltage Direct Current Transmi	ssion", P	eter Pere	egrinus Lt	d., 1983.				
3. E. W. Kimbark,	"Direct Current Transmission", Vo	ol.1, Wile	y-Interso	cience, 19	71.				

4. Vijay K. Sood, HVDC and FACTS Controller: Application of Static Converters in Power Systems, IEEE Power Electronics and Power Systems series, Kluwer Academic publishers, Boston, First edition January 2004.

5. S. Kamakshaiah and V. Kamaraju, "HVDC Transmission", McGraw Hill publishers, Second edition, 2020.

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO12	PSO1	PSO2									
CO1	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-
CO2	2	2	1	-	-	-	-	-	-	-	-	1	1	-
CO3	2	2	1	-	-	-	-	-	-	-	-	1	1	-
CO4													1	-
CO5	2 2 1 1												1	-
AV	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-

Department: Elect	rical and Electronics Engineering	ing Programme: B.Tech., (EE)								
Semester:SEVEN	TH	Subject	t Categor	y: PEC	Sei	nester I	Exam Type	e: TY		
Course Code	Course	Pe	eriod / W	eek	Credit	Ma	aximum M	larks		
	Course	L	Т	Р	C	CA	SE	TM		
EEA214	Digital Control Systems	3	-	-	3	25	75	100		
Proroquisito	Linear Control Systems (IV Sem	nester –	core) an	d Modern	n Contro	l Syster	ns (V sen	nester –		
Trerequisite	elective); Vector algebra and Matr	rix analy:	sis; Lapla	ace transf	orm and	Fourier	transform	•		
Course Outcome	Course Ou	utcome S	tatement				Lev	vel		
601	Interpret the basic concepts of	digital	control	system,z-	transform	n and	TT 1			
COI	choice of sampling time plays w	hich are	critical	in the red	construct	ion of	Under	stand		
	continuous-time signal from samp	led data.			1 4 1					
CO2	Deduce pulse transfer function for	or a disc	crete-time	e system	and to d	1scuss	Anal	yse		
	A notice the symptotic stability of discre	r for a di	ystem ca	n be asce	rlained.	naina		-		
CO3	classical approaches	er for a di	iscrete-th	me contro	of system	using	App	oly		
	Analyze the discrete time system	ma and	thair m	adalling	in state	G 10 000				
CO4	approach Knowledge of the property	erties of	a discrete	ouening	tems mo	-space delled	Anal	VCA		
in state-space.										
Analyse the synthesize state-feedback controllers (via pole-placement and										
	optimal technique) for stabilization	on of un	stable of	$\frac{1}{2}$ noorly	stable dis	screte-				
CO5 (optimize optimized) for extended of pointy share above An An										
	corrupted measurements.		unic sys		ne preser					
UNIT-I Int	roduction						Periods:	09		
Introduction to di	gital control system – sub-systems	of a typ	oical digi	tal contro	ol system	– disc	rete-time	07		
signal – quantizin	g and quantization error. Impulse s	ampling	and data	a hold – z	zero-orde	r hold a	and first-			
order hold circuits	– A/D and D/A conversion circuits							CO1		
Z-transform – z-tr	ransform of elementary signals - pr	roperties	of z-tran	sform –	importan	t theore	ems of z-	COI		
transform – invers	e z-transform. Mapping between the	e s plane	and z pla	ane.						
Reconstruction of	continuous-time signals from samp	led signa	ıls – Shaı	nnon's sa	mpling th	eorem.				
UNIT-II An	alysis using Pulse Transfer Funct	ion					Periods:	09		
Convolution summ	nation – starred Laplace transform	ation – p	oulse tran	nsfer func	ction - cl	osed-lo	op pulse			
transfer function.	Stability analysis of closed-loop d	liscrete-ti	ime syste	em using	Jury's t	est and	Bilinear	CO2		
transformation (R	couth's stability test). Transient a	ind stead	ly-state	analysis	of discre	ete-time	e control	001		
system.							D • 1	0.0		
UNIT-III Co	ntroller Synthesis: Classical App	roach			• •	11 .	Periods:	09		
Correlation betwee	en root locations in z-plane and tin	ne respor	nse - des	ign of dig	gital cont	roller 11	n z plane			
(root-locus approa	ach) and w plane (frequency resp	ponse ap	pproach).	PID co	ntrollers	– prop	ortional,	CO3		
diagnotization of or	valive modes – continuous-time	PID CO	ntroller	- classic	al tunin	g proce	edures –			
UNIT IV Sta	te space Approach	IZation.					Parioda	00		
State space model	L of discrete time systems discrete	atization	of conti	nuous tin	na stata (quotion	09		
solution of state e	r of discrete-time systems – discrete equation – state transition matrix as	nd its pr	onerties	statest	ne state-	ization	and state			
diagram – nulse	transfer function matrix - charac	teristic e	equation	- Figen	values -	Figen	vectors -	CO4		
Similarity transfor	mation. Controllability and observa	ability of	f Linear	Time Inv	ariant (L	TI) dise	crete data			
systems – tests for controllability and observability. Lyapunov stability analysis of discrete-time systems.										

UNIT-V C	NIT-V Controller Synthesis: State-space Approach Periods: 09											
State feedback controller design via pole placement – necessary and sufficient condition for arbitrary pole placement in z plane – State feedback controller synthesis – direct substitution method – similarity transformation approach and Ackermaan formula – deadbeat control technique. Controller design via optimization of a quadratic cost function (DLQR). Observer design and synthesis of observer based state feedback controller. CC Total Contact Hours: 45 Tutorial Hours: 00 Practical Hours: 00 Total Hours: 45												
Total Contact Hours: 45 Tutorial Hours:00 Practical Hours: 00 Total Hours:45												
Reference Book:												
 Katsuhiko Ogata, "Discrete-Time Control Systems", Second Edition, Prentice Hall India Learning Private Limited, 2005. 												
2. Gene F. Frank Edition Pearson	klin, J. David	Powell and Michael Workma	an, "Digital Control of Dynar	nic Systems", Third	1							
 Edition, Pearson Education, 2003. 3. M. Sami Fidali and Antonio Visioli, "Digital Control Engineering: Analysis and Design", Elsevier Inc., 2009. 4. Charles L. Phillips and H. Troy Nagle, "Digital Control System: Analysis and Design", Pearson Education International, 1998. 5. Kannan Moudgalya, "Digital Control", Wiley, 2008. 6. Allen R. Stubberud, Gene H. Hostetter Mohammed S. Santing, "Digital Control System: Pross, 1004. 												
S. Santina, "Digital Control System Design", Oxford University Press, 1994.												

COs					Prog	ram Out	tcomes ((POs)					Program Specific Outcomes (PSOs)	
	PO1	PO2	PO12	PSO1	PSO2									
CO1	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1
CO2	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
CO3	3	3	2	1	-	-	-	-	-	-	-	1	2	1
CO4	3	<u>3 3 2 1 </u>												1
CO5	3	3 3 2 1												1
AV	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)											
Semester: SEVE	NTH	Subject	t Categor	ry: PEC	Sei	mester I	Exam Type	e: TY			
Course Code	Course	Pe	riod / W	eek	Credit	Ma	aximum M	arks			
Course Code	Course	L	Т	Р	C	CA	SE	TM			
FFA215	Power System Restructuring	3	_		3	25	75	100			
	and Deregulation	5	_	_	5	25	15	100			
Prerequisite	-										
Course Outcome	Course Ou	utcome S	tatement				Lev	rel			
C01	Solve the issues available in restru problems in deregulated power ma	ictured p arket.	ower sys	stem and	can addre	ess the	Under	stand			
CO2	Exposed to the architecture of por such as TTC in the restructured po	wer marl wer mar	kets and ket	the techn	ical chal	lenges	Anal	yse			
CO3	Explore the impact of depreci	ation of	n the p	ower co narket	mponent	s and	and Apply				
CO4	Explain the fundamentals of mini	imizing t	he cost	of genera	tion sour	rces to	Anal	yse			
	Discuss the structure of electrical	tariff and	l study o	n the cur	ent scen	ario of					
CO5	the Indian power market.	unin un	i study o		ent seen		Anal	yse			
UNIT-I Fundamentals of Power Markets Periods: 09											
Fundamental sand structure of Restructured Power Market-Wheeling-Market Power- Power exchange											
Fundamental sand structure of Restructured Power Market–Wheeling–Market Power- Power exchange and neel markets Independent System Operator (ISO), components, role of ISO, Operating Experiences											
of Restructured E	lectricity Markets in various Countri	es (UK	Australia	a. Europe	US Asi	a).	Jerrenees	cor			
UNIT-II Tr	ansmission Challenges	(011)		., <u>2010</u> pe	,,		Periods:	09			
Transmission ex	pansion in the New Environme	nt–Introc	luction-l	Role of	transmis	sion p	lanning-				
Transmission Ca	pacity–Total Transfer Capability	(TTC)	– Comp	outational	procedu	ıre - N	Margins–	CO2			
Available transfer	capability (ATC)-Principles-Const	raints-M	ethods to	o compute	e ATC.		-				
UNIT-III Co	ongestion Management and Ancilla	ary Serv	ices				Periods:	09			
Concept of Conge	estion Management-Method store lie	eve the c	ongestio	n-Inter ar	nd Intra z	onal Co	ongestion				
Management-Ger	neration Rescheduling – Locational	l Margin	al Pricin	ng–Finan	cial Tran	smissio	n Right-	CO3			
Ancillary Services	S.										
UNIT-IV Tr	ansmission Pricing						Periods:	09			
Transmission pric	ing methods -Postage Stamp-Contra	act path-l	MW-mil	e– MVA	mile– Di	stributio	on Factor	CO4			
method-I racing r	nethod- Short run marginal cost (SR	MC)–Ge	enerator	Ramping	and Opp	ortunity	Costs.				
UNIT-V Indian Power Market Periods: 09											
Current Scenario	- Regions-Salient features of Ind	ian Elec	tricity A	$\begin{array}{c} \text{ACL } 2003 \\ \text{Near an item} \end{array}$	– Kegula	atory an		COF			
Unseheduled Inter	rehence Rete Operation of Indian	Dased	lariii —	necessity	-workin	ig Meet	namsm –	05			
Total Contact H	Jours: 45 Tutorial Hours:00		Practice	al Hours	00	То	tal Hours	•45			
Reference Book		,	114000	ai iiui s	. 00	10	<u>tai 110ui s</u>	.45			
1 M Shahidehno	ur and M. Alomoush Restructuring	Electric	al Power	Systems	Marcel	Decker	Inc. 2001				
2. M. Shahidehpo	pur, H. Yamin and Z. Li, Market Ope	erations i	n Electri	c Power S	Systems,	John W	iley &Son	s, Inc.,			
2002.	home Moth H I Dollar and Issa F	Declar		ion of D-	atmictur-	d Down	n Stratama-				
S. Kankar Bhattac Kluwer Acade	. Kankar Bhattacharya, Math H.J. Bollen and Jaap E. Daalder, Operation of Restructured Power Systems, Kluwer Academic Publishers, 2001.										

4. L. L. Lai, Power system Restructuring and Regulation, John Wiley sons, 2001.5. Scholarly Transaction Papers, Utility and Power Exchange web sites.

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO12	PSO1	PSO2									
CO1	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-
CO2	2	2	1	-	-	-	-	-	-	-	-	1	1	-
CO3	2	2	1	-	-	-	-	-	-	-	-	1	1	-
CO4													1	-
CO5	2 2 1 1												1	-
AV	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE) Semester SEVENTH Subject Octogory DEC											
Semester:SEVENTH Subject Category: PEC Semester Exam Type: TY Period / Week Credit Maximum Marks											
Course Code	Course	Pe	eriod / W	eek	Credit	Ma	aximum M	[arks			
	Course	L	Т	Р	C	CA	SE	TM			
EEA216	High Voltage Engineering	3	-	-	3	25	75	100			
Prerequisite	-										
Course Outcome	Course O	utcome S	tatement				Lev	/el			
CO1	Explicate the various breakdown Dielectrics.	n mechar	iisms in	Gas, Liq	uid, and	Solid	Under	stand			
CO2	Explain the methods of generatin voltage and currents.	ng and m	easuring	High DC	C, AC, In	npulse	Anal	yse			
CO3	Measure various forms of voltage	and curr	ent using	g differen	t methods	5.	Арр	oly			
CO4	Illustrate how over-voltages arise these over-voltages.	in a pow	er syster	n, and pro	otection a	gainst	Anal	yse			
CO5	Suggest suitable HV testing of Ele	ectrical p	ower app	paratus as	per Stan	dards.	Anal	yse			
UNIT-I Ele	ectrical Breakdown in Gases, Soli	ds and L	iquids				Periods:	09			
Ionization process	es - Townsend & Streamer theory -	- the spar	king vol	tage - Pas	chen's la	w - Tim	ne lag for				
breakdown - Brea pure and commerce discharge-applicat	kdown in non-uniform fields and tial liquids and solids dielectrics and tions of insulating materials	l corona d compo	discharg site diele	ges-Condu ectrics- Va	action and	d break eakdow	down in n-Partial	CO1			
UNIT-II Generation of High Voltages and High Currents Periods: 09											
Generation of high Generation of high multiplier circuit a Generation of imp and control of imp	AC voltages: cascaded transforme gh DC voltages: Rectifier and V and its qualitative analysis. ulse and switching surges: Marx cir- pulse generators.	ers. oltage d rcuit - ge	oubler c neration	ircuits -C	Cockroft npulse cı	Walton arrent -	voltage Tripping	CO2			
UNIT-III Me	easurement of High Voltages and	High Cu	rrents				Periods:	09			
Measurement of A dividers and high Partial discharge n	AC, DC impulse and switching sur speed CRO - Dielectric loss measu neasurement: straight detection and	ges using rement a balance	g sphere it power l detectio	gaps - pe frequency on method	eak voltm y using S 1.	eters - chering	potential bridge -	CO3			
UNIT-IV Ov	er Voltages and Insulation Co Or	rdinatior	IS				Periods:	09			
Charge formation switching over vol	in clouds - stepped leader - Lightn tages - protection against over volta	ning surg ages.	es - caus	es of ove	r voltage	s - ligh	tning and	CO4			
UNIT-V Hig	gh Voltage Testing Practice						Periods:	09			
Indian Standards/IEC specification for testing - correction factor - testing of isolators and circuit breakers - testing of cables - power transformers and cables - High voltage laboratory layout - indoor and outdoor laboratories, testing facility requirements - safety precautions in H. V. Labs.											
Total Contact H	lours: 45 Tutorial Hours:00	0	Practic	al Hours:	: 00	То	tal Hours	:45			
Reference Book: 1. M.S. Naidu and company, New D 2. E. Kuffel and V 2004. 3. C. L. Wadhwa, 4. D. V. Razevig (Publishers, 1993.	N. Kamaraju, "High voltage Enginelhi, 2003. V.S. Zaengel, "High voltage Engine" "High Voltage Engineering", New Translated by Dr. M. P. Chourasia)	neering", Pering Fur Age Inte), "High "	Third ed ndamenta rnationa Voltage l	lition, Tat als", Perg l Publishe Engineerin	a McGra amon Pre rrs,2007. ng Funda	w Hill p ess, Oxf mentals	oublishing ford, Londo s", Khanna	on, I			
J. K. Arora and W	. wosch "High voltage and Electri	cal insul	ation Eng	gineering	, John W	ney &	50ns, 201	1.			

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO12	PSO1	PSO2									
CO1	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1
CO2	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
CO3	2	2	1	-	-	-	-	-	-	-	-	1	1	1
CO4												1	1	1
CO5	2 2 1 1												1	1
AV	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)											
Semester: SEVE	NTH	Subject	t Catego	ry: PEC	Ser	nester l	Exam Typ	e: TY			
Course Code	Course	Pe	riod / W	'eek	Credit	Ma	aximum N	Iarks			
	Course	L	Т	Р	C	CA	SE	TM			
EEA217	Power System Economics	3	-	-	3	25	75	100			
Prerequisite	-										
Course Outcome	Course O	utcome S	tatement	t			Lev	vel			
CO1	Discuss the structure of electrical the power components	l tariff ai	nd the in	npact of o	lepreciati	on on	Under	stand			
CO2	Illustrate the concepts and princip	les of ec	onomic o	dispatch.			Ana	lyse			
CO3	Describe the basic concepts of functions.	f econon	nic oper	ation wi	th non-si	nooth	Арј	ply			
CO4	Explain the fundamentals of min meet the power system load with	imizing t the aid of	the cost	of genera	tion sour ethods	ces to	Ana	lyse			
C05	Identify economic dispatch and system test data.	optimal	power f	low for p	practical j	power	Ana	lyse			
UNIT-I Ec	onomic Considerations						Periods:	09			
Cost of electrical energy – Expressions for cost of electrical energy–Capital-interest– Depreciation- Different methods- Factors affecting cost of operation- Number and size of generating units- Importance of high load factor- Importance of power factor improvement- Most economical power factor- Meeting the KW demand on power stations- Power system tariffs – Regions and structure of Indian Power System.											
UNIT-II Economic Dispatch Periods: 09											
Modelling of Cos Real and Reactive - Generator Capal dispatch in Power	st Rate Curves – Economic Dispate power limits; Losses included- Los bility Curve – Effect of Ramping ra Systems.	tch Calcu sses of ec ates – Pro	ulation - conomy i ohibited	Losses r in increme Operating	neglected, ental cost g Zones- 2	, with g data - l Automa	generator Problems atic Load	CO2			
UNIT-III Ec	onomic Operation						Periods:	09			
General loss form coefficients– Syst plant generation– CCCP, Multiple 1 problems	nula- Evolution of incremental transmissio rematic development of transmissio Participation Factor- Non – Smoo Fuel) – Problems-Introduction to A	nsmission on loss fo th Fuel I Artificial	n loss ra ormula- ' Function Intellige	te- Meth Transmiss s (Quadra ence Tecl	od of cal sion loss atic, Valv aniques fo	culation as a fun e point or solv	n of loss nction of loading, ing ELD	CO3			
UNIT-IV Ec	onomic Control						Periods:	09			
Inter connected o Newton's Metho scheduling proble	peration - Economic operation of d-Modelling and solution approa m using Dynamic Programming.	hydro th ch to sl	nermal p nort terr	ower plat m and lo	nts - Gra ong-term	dient a Hydro	pproach– -Thermal	CO4			
UNIT-V Or	otimal Power Flow and Fundamer	ntals of <mark>N</mark>	Aarkets				Periods:	09			
Problem formulat methods– Constra Efficiency and Eq	ion - Cost minimization - Loss min ints-DC and AC OPF (Real and Re uilibrium-Modelling of consumers a	nimizatio eactive P and prod	n - Solu ower Di ucers bio	tion using spatch)–F ls– Globa	g NLP an undamen l welfare-	d succe tals of -Dead]	essive LP Markets– Loss.	CO5			
Total Contact H	Iours: 45 Tutorial Hours:00	0	Practic	al Hours	: 00	To	tal Hours	:45			
Reference Book:1. Allen J Wood a20102. Hadi Saadat, Pe3. Steven Stoft, Pe4. Daniel S. Kirse	and BF Wollen berg, Power Generat ower System Analysis, Second Edit ower System Economics, John Wile when and Goran Strbac, Power Syste	tion, Ope ion, Tata ey & Son em Econo	ration ar McGrav s, 2000. mics, Jo	nd Contro v Hill Put hn Wilev	l, John W blishers, 2 &Sons, I	 2007. _td, 200	Sons, New	v York,			

4. Daniel S. Kirschen and Goran Strbac, Power System Economics, John Wiley & Sons, Ltd, 2004.

COs					Prog	ram Out	tcomes ((POs)					Prog Spec Outc (PS	gram cific omes Os)
	PO1	PO2	PO12	PSO1	PSO2									
CO1	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-
CO2	2	2	1	-	-	-	-	-	-	-	-	1	1	-
CO3	2	2	1	-	-	-	-	-	-	-	-	1	1	-
CO4													1	-
CO5	2 2 1 1												1	-
AV	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-

Department: Electrical and Electronics EngineeringProgramme: B.Tech., (EE)Semester:SEVENTHSubject Category: PECSemester Exam Type: TY											
Semester:SEVENTH Subject Category: PEC Semester Exam Type: TY Course Code Course Period / Week Credit Maximum Marks											
Course CodeCoursePeriod / WeekCreditMaximumLTPCCASI											
	Course	L	Т	Р	C	CA	SE	TM			
EEA218	Utilization of Electrical Energy	3	-	-	3	25	75	100			
Prerequisite	-	•	•		•	•					
Course Outcome	Course O	utcome S	tatement				Lev	rel			
CO1	Elucidate the working of various scheme	electric l	amps an	d design	a good li	ghting	Under	stand			
CO2	Summarize the various types of design a heating element	f electric	e heating	g, electri	c weldin	g and	App	oly			
CO3	Explain the different types of dr motors.	rives and	l control	Schemes	s using e	lectric	App	oly			
CO4	Analyse the different electric to trends.	raction s	ystems	and addr	ress the	recent	Anal	yse			
CO5	Explain the different types of batt	teries and	l energy	conserva	tion		App	oly			
UNIT-IIlluminationPeriods: 09											
Introduction - definition and meaning of terms used in illumination engineering –Laws of illumination -											
Introduction - definition and meaning of terms used in illumination engineering –Laws of illumination - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapour lamps, fluorescent lamps – design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - energy saving lamps, LED.											
UNIT-II He	eating and Welding						Periods:	09			
Introduction - adv resistance heating resistance welding	vantages of electric heating – mod g - arc furnaces - induction heating g - arc welding - power supply for an	es of he g - diele rc weldin	at transf ctric hea g - radia	er - meth ating - el tion weld	ods of e ectric we	lectric ł elding –	eating - types -	CO2			
UNIT-III El	ectric Drives and Control		-		-		Periods:	09			
Group drive - Ine	dividual drive - selection of motor	s – start	ing and	running o	characteri	istics –	Running				
characteristics - N	Aechanical features of electric mot	tors – Di	rives for	different	industri	al applie	cations -	CO3			
Choice of drives -	- power requirement calculation – po	ower fact	tor impro	ovement.							
UNIT-IV Ele	ectric Traction						Periods:	09			
Traction system –	Speed time characteristics – Series	and para	llel conti	rol of D.C	^C motors	- Open o	circuited,				
shunt and bridge t	ransitions – Tractive effort calculati	ion – Ele	ctric bra	king – Tr	amways	and trol	ley bus –	CO4			
A.C traction and r	ecent trend.						Daviadas	00			
UNII-V Ele	ectrolytic Processes	for Elec	tao mloti	na Tan	Ira and at	han agu	Perious:	09			
Coloulation of an	arization factor – preparation work		d maint	ng – Tan	ks and ot	ner equi	ipment –				
batteries Compos	ergy requirements – Methods of Cha	ng End	a manu	enance –	toobnig	lla MI- (domestic	CO5			
and industrial ann	lications	ng – Lik	igy coi	iser varior		ues 101	uomestie				
Total Contact H	Iours: 45 Tutorial Hours:00)	Practic	al Hours	: 00	Το	tal Hours	:45			
Reference Book:		,	114000	ur mours		10					
1. N.V. Suryanara	yana, "Utilisation of Electric Power	r", Wiley	Eastern	Limited,	New Age	e Interna	ational Lir	nited,			
2. J.B. Gupta. "Ut	ilisation Electric power and Electric	Traction	n", S.K	Kataria a	nd sons.	2000.					
3. R.K. Raiput. "I	Jtilisation of Electric Power". Laxm	i publica	tions pri	vate Lim	ited., 200	7.					
4. H. Partab, "Art	and Science of Utilisation of Electr	ical Ener	gy". Dh	anpat Rai	and Co	New D	elhi-2004.				
5. C.L. Wadhwa,	"Generation, Distribution and Utilis	ation of	Electrica	l Energy'	', New A	ge inter	national P	vt.			
Ltd., 2003	·				·	-					

COs					Prog	ram Out	tcomes ((POs)					Program Specific Outcomes (PSOs)	
	PO1	PO2	PO12	PSO1	PSO2									
CO1	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
CO2	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
CO3	2	2	1	-	-	-	-	-	-	-	-	2	2	2
CO4	2													2
CO5	2 2 1												2	2
AV	2	2	2	2	2									

OPEN ELECTIVEELECTIVE (OEC)

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)											
Semester:-		Subject	t Categoi	ry: OEC	Sei	nester I	Exam Typ	e: TY			
Caura Cada	Comme	Pe	eriod / W	eek	Credit	Ma	aximum M	larks			
Course Code	Course	L	Т	Р	C	CA	SE	TM			
EEA301	Power Generation Systems	3	-	-	3	25	75	100			
Prerequisite											
Course Outcome	Course O	utcome S	tatement				Lev	vel			
CO1	Explain the concepts of power g	eneratior	n from v	arious co	nvention	al and	Under	estand			
	non-conventional power generation	on metho	ds.				Under	stand			
CO2	Explain the process of power gen plant.	neration	from the	ermal and	hydro e	lectric	Under	stand			
CO3	Explain the economic operation of	f thermal	and hyd	lro electri	c plant.		Under	stand			
CO4	Explain the process of power gene	eration fr	om Nucl	ear electr	ic plant.		Under	stand			
CO5	Explain the concept of non-conve	ntional p	ower pla	nts			Under	rstand			
UNIT-I Economics of Generation Periods: 09											
Load and load du	ration curve - load, demand and div	versity fa	ctors – p	lant capa	city and p	olant use	e factors	CO1			
- choice of type o	f generation – choice of size and nu	mber of	units – c	ost of ene	rgy gene	rated –	tariffs.	COI			
UNIT-II	Thermal And Hydro Power Sys	tems					Periods:	09			
Comparison of po	wer systems - classification, typica	ıl layout	and worl	king of sto	eam, dies	el low a	and high	CO^{2}			
head hydro power	plants-pumped storage plants							COL			
UNIT-III	Economic Operation of Steam –	Hydro	Plants				Periods:	09			
Interconnected op economic loading	peration – division of load in inte of steam power plants and steam h	rconnect ydro pow	ed syste: /er plants	ms – los: s.	s formula	a coeffi	cients –	CO3			
UNIT-IV	Nuclear Power Plants						Periods:	09			
Principle of nucle	ear power generation – location –	- advanta	ages and	disadvar	ntages of	nuclea	r power				
plants - types of	nuclear reactors and their compar	rison –Be	oiling W	ater Read	ctor (BW	R), Pre	ssurized	CO4			
Water Reactor (P	WR)- layout of reactors - reactor	r control	- reacte	or safety	– waste	disposa	l-Safety	04			
measures for Nucl	ear Power plants.										
UNIT-V	Non-Conventional Power Plants	5					Periods:	09			
Basic concepts – principle of working and layout of MHD, solar, wind, tidal, biomass, geothermal											
power Generation	power Generation and Fuel Cell power systems.										
Total Contact He	ours: 45 Tutorial Hours:00		Practica	Hours:	00	Tot	al Hours:	:45			
Reference Book:		100		. 1	D II : 0	0.1.0					
1. V.K Mehta, "Pi	rinciples of Power Systems", S. Cha	and & Co	mpany I	td., New	Delh1., 2	012.	D : 1007				
2. M. L. Soni, P. V. Gupta, U. S. Bhatnagar, "A Course in Electrical Power", Edition, Dhanpat Rai, 1987											

Nag.P.K. K, "Power Plant Engineering", Tata McGraw Hill, Second Edition, 12th Reprint, 2006.
 Rai. G.D, "An introduction to Power Plant Technology", Khanna Publishers, Delhi, Eleventh Reprint, 2013

COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	1	-	-	-	-	-	-	-	-	1	-
CO2	2	2	1	1	-	-	-	-	-	-	-	-	1	-
CO3	2	2	1	1	-	-	-	-	-	-	-	-	1	-
CO4	2	2	1	1	-	-	-	-	-	-	-	-	1	-
CO5	2	2	1	1	-	-	-	-	-	-	-	-	1	-
AV	2	2	1	1	-	-	-	-	-	-	-	-	1	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)										
Semester:-		Subject	t Categor	y: OEC	Ser	nester l	Exam Type	e: TY		
Course Code	Comme	Pe	riod / W	eek	Credit	M	aximum M	larks		
Course Code	Course	L	Т	Р	С	CA	SE	TM		
EEA302	System Dynamics	3	-	-	3	25	75	100		
Prerequisite	Differential equations, Integral ca transform.	lculus, V	ector alg	ebra and	Matrix aı	nalysis;	Laplace			
Objective	Renewable energy would provid sources which are the prime factor	le the kr r for sust	owledge ainable d	for the levelopm	deploym ent.	ent of	renewable	energy		
Course Outcome	Course O	utcome S	tatement				Lev	/el		
C01	Illustrate the basic concepts of function and state-space approach	system a	attributes	, modell	ing in tr	ansfer	Under	stand		
CO2	Model complex mechanical, electronsfer function and state-space a	ctrical ar	d electro	omechani	cal syste	ms in	Under	stand		
CO3	Modelling fluid and thermal sy analogies between mechanical, ele	stems fr ectrical, f	om first luid, and	principle l thermal	es and d systems.	educe	Under	stand		
CO4	Explain the system variables w standard test signals and sinusoida	vith resp al steady	ect to ti state ana	me when lysis.	n subject	ted to	Under	stand		
CO5Explain the concept of stability of dynamic systems and to study the tests for ascertaining system stability including Lyapunov approach.Understa										
UNIT-I Mathematical Modelling of Dynamic Systems Periods: 09										
causal systems. P systems (translatio approach – open type and order. State-variable App equation and outp dynamic systems. approach over tran	Physics based (first principle) modonal and rotational systems) – lind loop and closed-loop systems – poproach: Concept of state-space modout equation – physical variable ap Derivation of transfer function finsfer function model.	delling o earization bles and delling o proach a com state	f dynam n of non zeros – f dynami nd phase e-space n	ic system classifica ic system variable nodel. Ad	stems. Tr tion of sy s in time approacl dvantages	ple me ransfer ystem t -domain h for m s of sta	nd non- chanical function based on n – state dodelling ite-space	CO1		
UNIT-II	Mechanical, Electrical and Elec	tromech	anical S	ystems			Periods:	09		
Modelling of con function and state impedance – MIM control and Field of	nplex mechanical systems (with n-space approach. Mathematical mo 40 electrical circuits. Analogy betw control of DC servo systems.	multiple delling c ween ele	inputs a of R-L, R ctrical an	nd outpu C-C and R nd mecha	ts (MIM -L-C circ nical sys	O)) in cuits – tems. A	transfer complex Armature	CO2		
UNIT-III	Fluid and Thermal Systems						Periods:	09		
Physics based approach for mathematical modelling of liquid level system (with and without sub-system interactions), pneumatic and hydraulic systems. Thermal systems – thermal resistance and thermal capacitances – modelling of temperature control system (first-order). Analogy between fluid and thermal systems.										
UNIT-IV	Time-domain Analysis of Dynar	nic Syste	ems				Periods:	09		
Classical Approach: Standard test signals – transient response analysis of first-order dynamic system – transient response analysis of second order dynamic systems for different damping conditions. Steady state analysis – steady state errors. Steady-state response of an LTI system to sinusoidal input – frequency response phenomenon. State-space Approach: Solution to state equation (homogenous and forced systems) – properties of state transition matrix.										

UNIT-V Stability	y of Dynamic Systems			Periods:	09					
Concept of bounded-input-	-bounded-output (BIBO) and	l internal stability – correlat	ion betwe	en pole						
location in s plane and im	pulse response of a system	- significance of dominant	pole-pair.	Routh-						
Hurwitz stability criterion - relative stability analysis. Eigen values of system matrix and stability.										
Introduction to Lyapunov stability analysis (energy function approach) – Lyapunov stability analysis of										
LTI systems (qualitative app	proach only).									
Total Contact Hours: 45	Tutorial Hours:00	Practical Hours: 00	Tot	al Hours	:45					
Reference Book:										
1. Katsuhiko Ogata, "Syster	n Dynamics", Fourth Edition	, Pearson Education, 2005								
2. Katsuhiko Ogata, "Moder	rn Control Engineering", Fift	h Edition, Prentice Hall, 2010	•							
3. Norman S Nise, "Control	Systems Engineering", 7th E	Edition, Wiley, 2015.								
4. Gene F. Franklin, J. Davi	d Powell and Abbas Emami-I	Naeini, "Feedback Control of	Dynamic S	Systems"	, 8 th					
Edition, Pearson, 2018.										
5. Joseph J. Distefano, III, A	Allen R. Stubberud and Ivan J	. Williams, "Feedback and Co	ontrol Syst	ems", Scl	naum's					
Outlines, Second Edition, T	Tata-McGraw Hill Edition, 20	003.								
6. Nicolae Lobontiu, "Syste	m Dynamics for Engineering	Students", Academic Press (1	Elsevier), 2	2010.						

COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	1	2	-
CO2	3	3	1	-	-	-	-	-	-	-	-	1	2	-
CO3	3	3	1	-	-	-	-	-	-	-	-	1	2	-
CO4	3	2	1	-	-	-	-	-	-	-	-	1	2	-
CO5	3	3	1	-	-	-	-	-	-	-	-	1	2	-
AV	3	2.8	1	-	-	-	-	-	-	-	-	1	2	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)												
Semester:-		Subject	t Categor	y: OEC	Ser	nester l	Exam Typ	e: TY				
Course Code	Course	Pe	eriod / W	eek	Credit	Ma	aximum M	farks				
Course Code	Course	L	Т	Р	С	CA	SE	TM				
EEA303	Fuzzy and Neural Systems	3	-	-	3	25	75	100				
Prerequisite	-		•		•							
Course Outcome	Course O	utcome S	tatement				Lev	vel				
CO1	Explain the fundamental concepts	of Fuzz	y set theo	ory.			Under	stand				
CO2	Illustrate the Fuzzy inference mec	hanisms	and defu	zzificatio	on concep	ts	Under	stand				
CO3	Explain the fundamental concepts	of Neura	al Netwo	rks			Under	stand				
CO4	Outline the supervised and uns	supervise	ed learni	ng algor	ithms us	ed in	Under	stand				
	Neural networks	· 1	NT T			1 4						
CO5	applications to Engineering	les and	Neuro I	uzzy Sy	stems a	nd its	Under	stand				
UNIT-I	Fundamental Concepts of Fuzzy	y Set The	eorv				Periods:	09				
Conventional sets	versus fuzzy sets – Basic concep	ts and de	efinitions	. Operati	ion in fuz	zzv sets	S- NOT.					
AND and OR operators. Convexity of fuzzy sets-lamda cuts on fuzzy sets. Membership functions - CO1												
type's choice and membership value assignment methods.												
UNIT-II Fuzzy Inference Mechanisms Periods: 09												
Fuzzy relationshi	Fuzzy relationship –equivalence and tolerance. Fuzzy if then rules– types. Rule based models -											
Mamdani and TS	SK models. Defuzzification metho	ods. Fuzz	zy contro	ol system	ns– Simp	le and	general	CO2				
controllers-applie	cations		-	·	-		-					
UNIT-III	Introduction to Neural Network	(S					Periods:	09				
Biological neuron	n- comparison between a biologica	al neuron	and a c	computer	- Model	of an A	Artificial					
Neuron -single a	nd multi-input neurons. Transfer	function	s-types.	Neural N	Jetwork .	Archite	ctures –	CO3				
Perceptron learnin	ng rule- limitations -linear seperabil	ity proble	em. Mult	ilayer net	works.							
UNIT-IV	Supervised and unsupervised lea	arning a	lgorithn	15			Periods:	09				
Optimization tech	niques. Back propagation algorithm	n for mu	lti-layer 1	networks-	– advanta	iges, dr	awbacks					
and applications	- Variants of Back Propagation	Algorith	ms. RBI	F networ	ks. Hebb	s unsu	pervised	CO4				
learning rule. Koh	onens self-organizing map algorith	m										
UNIT-V	Associative memories and Neur	o Fuzzy	Systems				Periods:	09				
Types of Associa	ative Memories -Bidirectional Ass	sociative	Memori	es – Aut	to Associ	iative N	Memory:					
Architecture, Algo	orithm and properties. Neuro-fuzzy	systems	 Applic 	ation of r	neural and	1 fuzzy	systems	CO5				
to Engineering.												
Total Contact Hours: 45 Tutorial Hours:00 Practical Hours: 00 Total Hours:45												
Reference Book:												
1. Timothy. J. Ros	se, Fuzzy logic with Engineering ap	plication	s, McGra	aw Hill19	99.							
2. Hagen, Demuth	and Beale, Neural Network design	, Thomp	son Lear	ning, 200	2.							
3. K. Vinoth Kum	ar, R. Saravana Kumar, Neural Net	works an	d Fuzzy	Logic, K	atson, 20	12.						
4. Peter E. Sutherl	l, "Principles of Electrical Safety", I	IEEE Pre	ss, Wiley	y, 2015.								
5. John Yen, Reza Langani, Fuzzy logic, Pearson Education, 1999.												

6. S. Rajasekaran, G. A. VijayalakshmiPai, Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications, PHI, 2017.

COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	-	-	-	-	-	-	-	-	1	1	-
CO2	1	1	1	-	-	-	-	-	-	-	-	1	1	-
CO3	1	1	1	-	-	-	-	-	-	-	-	1	1	-
CO4	1	1	1	-	-	-	-	-	-	-	-	1	1	-
CO5	1	1	1	-	-	-	-	-	-	-	-	1	1	-
AV	1	1	1	-	-	-	-	-	-	-	-	1	1	-

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)											
Semester: -			Subject	t Categoi	y: OEC	Ser	nester H	Exam Type	: TY		
Course Code		Course	Pe	riod / W	eek	Credit	Ma	aximum M	arks		
Course Code		Course	L	Т	Р	C	CA	SE	TM		
FF A 30/	PLC AND	INDUSTRIAL	3			3	25	75	100		
EEAJ04	AUTOMA	TION	5	-	-	5	23	15	100		
Prerequisite	-										
Course Outcome		Course O	utcome S	tatement				Lev	el		
CO1	Explicate Programma	the Architecture of able Logic Controllers	Industria	l Autom	nation an	d worki	ng of	Unders	stand		
CO2	Choose the	components of PLC and	nd addres	ssing the	memory			Evalu	iate		
CO3	Perform pr timers &	ograms for simple app counters	olications	using b	it logic in	nstructior	is and	App	ly		
CO4	Use Func programmi	ctions and Function	Blocks	for 1	Industrial	Applic	ations	App	ly		
CO5 Diagnose the Hardware faults, Programming Error, and developing simple application. Analyse											
UNIT-I PROGRAMMABLE LOGIC CONTROLLERS Periods: 09											
Evolution of PLC	– Sequenti	al and Programmable	controlle	ers – Ar	chitecture	of PLC	-PLC H	Iardware			
components: I/O	modules,	CPU, Memory-PLC	Program	mming	devices-N	Memory	allocat	ion and	CO1		
Addressing, PLC S	Scan Cycle.	, ,	0	0		5					
UNIT-II PR	OGRAMM	ING PART - I						Periods:	09		
Programming Met	hods: Ladder	r logic, Instruction list,	Sequent	ial functi	on chart-	NO/NC	& RLO	Concept			
– Bit Logic Instru	uctions - Pro	ogramming timers and	d counter	rs using	ladder lo	ogic – m	ath inst	ructions,	CO2		
Program control ir	structions.										
UNIT-III PR	OGRAMM	ING PART - II			_			Periods:	09		
Symbolic Name -	Local Varia	ables – Function and I	Function	Blocks,	Instance	Data blo	ck, Sha	red Data			
Block-Single Ins	tance and N	Multiple Instance – A	Analog S	Signal P	rocessing	g in PLO	C - Sc	aling &	CO3		
Normalising, Prog	ram Debugg	ging – Cross reference	s – Call	structure	e - Assignation for the second seco	nment lis	t – Dep	bendency			
Structure and Reso	DUST DIAL	Handling OBs.						D	00		
UNIT-IV IN	DUSI RIAL	AUTOMATION	1 Autom	otion Ei	wad Auto	mation	Dream	Periods:	09		
Automation Flex	ible Automa	tion Components of L	n Automa ndustrial	Automat	tion Ser	Sore	- Flogi	ammable	CO4		
INIT_V PI	CS IN PRO	CFSS AUTOMATIO	N	Automa	1011 - 501	15015.		Pariods	<u> </u>		
Development of c	estrol logic t	for: Planner machine-S	kin hoist	t control	Automat	ic contro	l of wat	er numn-			
Air compressor-Co	onvevor syste	em-Battery operated tri	uck-bottl	e filling	system			er pump-	CO5		
Total Contact H	lours: 45	Tutorial Hours: 0		Practic	al Hours	: 00	То	tal Hours	:45		
Reference Book		i utoriur riburs, o	v	Tractic	ui iioui s	. 00	10	tur mour s			
1 Frank Petruzella	a "Program	nable Logic Controller	s" McGr	aw-Hill]	Education	– Fourth	Edition	n 2010			
2. W. Bolton, "Pro	ogrammable	Logic Controllers" Nev	wnes. Six	th edition	n 2015	i iouiu	Lando				
3. BISWANATH	PAUL. "Indi	ustrial Electronics and	Control I	ncluding	Program	mable Lo	ogic Co	ntroller".			
Prentice-Hall of I	ndia Private	Limited – Third Editio	n, 2014.	2			6 - 0)			
4.John W. Webb,	Ronald A. R	eis, "Programmable Lo	ogic Cont	rollers: I	Principles	and App	lication	s" Prentice	eHall,		
2003					-						

5. Jon Stenerson, "Programmable Logic Controllers with ControlLogics", DELMAR Cengage Learning

COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	1	-	-	2	-	2	2	2	1	2
CO2	3	3	3	-	2	-	-	1	-	2	3	2	1	3
CO3	3	3	3	-	2	-	-	1	-	2	3	2	1	3
CO4	2	3	1	-	1	-	-	1	-	1	3	1	1	3
CO5	2	3	1	-	2	-	-	1	-	1	3	1	1	3
AV	2.6	2.8	2	-	1.6	-	-	1.2	-	1.6	2.8	1.6	1	2.8

Department: Electrical and Electronics Engineering Programme: B.Tech., (EE)											
Semester: -		Subject Category	y: OEC	Ser	nester E	Exam Type	: TY				
Comme Conta	C	Period / We	eek	Credit	Ma	ximum M	arks				
Course Code	Course	L T	Р	С	CA	SE	TM				
FF A 305	PROCESS CONTROL	3		3	25	75	100				
ELASUS	ENGINEERING	5 -	-	3	23	15	100				
Prerequisite	-										
Course Outcome	Course O	utcome Statement				Lev	el				
CO1	Build the mathematical model of	Simple systems				Арр	ly				
CO2	Select the suitable control method	s for a particular p	process			Unders	stand				
CO3	Choose the Final control elements	for process contro	ol			Anal	yse				
CO4	Develop a simple tuning algorithm	n for PID controlle	er			Арр	ly				
CO5 Relate the simple control methods with multi-loop control. Analyse											
UNIT-I PROCESS DYNAMICS Periods: 09											
Need for process c	ontrol – Mathematical model of Fl	ow, Level, and Th	ermal pr	ocesses –	- Interac	ting and					
non-interacting systems –Continuous and batch processes –Servo and regulatory operations – Heat CC											
exchanger.	_		-								
UNIT-II CO	NTROL ACTIONS					Periods:	09				
Characteristic of o	. off manual simple model f	UNIT-II CONTROL ACTIONS Periods: 09									
Characteristic of on-off, proportional, single speed floating, integral and derivative controllers – PI, PD											
and PID Control m	nodes –Electronic PID controller –	oating, integral ar Auto transfer - Res	nd deriva	tive cont ip	roners -	– PI, PD	CO2				
and PID Control m UNIT-III FIN	nodes –Electronic PID controller – . NAL CONTROL ELEMENTS	oating, integral ar Auto transfer - Res	set windu	ip	rollers –	- PI, PD Periods:	CO2 09				
and PID Control mUNIT-IIIFINPID Tuning- Pr	n-on, proportional, single speed in nodes –Electronic PID controller – . NAL CONTROL ELEMENTS ocess reaction curve method – (oating, integral ar Auto transfer - Res Continuous-cycling	g metho	tive cont ip d – Dan	nped os	- PI, PD Periods: cillation	CO2 09				
and PID Control mUNIT-IIIFINPID Tuning - Prmethod, Introducti	nodes –Electronic PID controller – . NAL CONTROL ELEMENTS vocess reaction curve method – C on to Auto tuning of PID controller	oating, integral ar Auto transfer - Res Continuous-cycling s.	set windu g methoo	ip d – Dan	nped os	- PI, PD Periods: cillation	CO2 09 CO3				
and PID Control mUNIT-IIIFINPID Tuning- Prmethod, IntroductiUNIT-IVCO	n-on, proportional, single speed in nodes –Electronic PID controller – . NAL CONTROL ELEMENTS occess reaction curve method – C on to Auto tuning of PID controller NTROLLER TUNING	oating, integral ar Auto transfer - Res Continuous-cycling s.	g metho	d – Dan	nped os	PI, PD Periods: cillation Periods:	CO2 09 CO3 09				
and PID Control m UNIT-III FIN PID Tuning - Pr method, Introducti UNIT-IV CO History of Autom	n-on, proportional, single speed in nodes –Electronic PID controller – . NAL CONTROL ELEMENTS ocess reaction curve method – C on to Auto tuning of PID controller NTROLLER TUNING nation – Architecture of Industrial	oating, integral ar Auto transfer - Res Continuous-cycling s. Automation, Fix	g methoo	d – Dan	nped os - Progra	Periods: cillation Periods: ammable	CO2 09 CO3 09				
and PID Control mUNIT-IIIFINPID Tuning – Prmethod, IntroductiUNIT-IVCOHistory of Automation – Flex	nooli, proportional, single speed in nodes –Electronic PID controller – . <u>NAL CONTROL ELEMENTS</u> occess reaction curve method – C on to Auto tuning of PID controller NTROLLER TUNING nation – Architecture of Industrial tible Automation, Components of In	oating, integral ar Auto transfer - Res Continuous-cycling s. Automation, Fix ndustrial Automati	g method	d – Dan mation –	nped os - Progra	Periods: cillation Periods: ammable	CO2 09 CO3 09 CO4				
and PID Control mUNIT-IIIFINPID Tuning – Prmethod, IntroductiUNIT-IVCOHistory of Automation – FlexUNIT-VMU	n-on, proportional, single speed in nodes –Electronic PID controller – . NAL CONTROL ELEMENTS occess reaction curve method – C on to Auto tuning of PID controller NTROLLER TUNING nation – Architecture of Industrial tible Automation, Components of In JLTILOOP CONTROL	oating, integral ar Auto transfer - Res Continuous-cycling s. Automation, Fix ndustrial Automati	g method	d – Dan mation –	nped os - Progra	- PI, PD Periods: cillation Periods: ammable Periods:	CO2 09 CO3 09 CO4 09				
and PID Control mUNIT-IIIFINPID Tuning – Prmethod, IntroductiUNIT-IVCOHistory of Automation – FlexUNIT-VMUMethods of proce	ALCONTROL ELEMENTS NAL CONTROL ELEMENTS Occess reaction curve method – C On to Auto tuning of PID controller NTROLLER TUNING Tation – Architecture of Industrial tible Automation, Components of In ULTILOOP CONTROL Ess control – Feed-forward control	oating, integral ar Auto transfer - Res Continuous-cycling s. Automation, Fix ndustrial Automati 1 – Ratio control	g method ked Auto – Casca	d – Dan mation – isors.	nped os - Progra	- PI, PD Periods: cillation Periods: ammable Periods: ferential	CO2 09 CO3 09 CO4 09 CO5				
and PID Control mUNIT-IIIFINPID Tuning - Prmethod, IntroductiUNIT-IVCOHistory of Automation - FlexUNIT-VMUMethods of procecontrol, Introducti	An-oni, proportional, single speed in nodes –Electronic PID controller – And CONTROL ELEMENTS occess reaction curve method – Controller ONTROLLER TUNING NATION – Architecture of Industrial tible Automation, Components of In ULTILOOP CONTROL ess control – Feed-forward contro on to multivariable control– Model	oating, integral ar Auto transfer - Res Continuous-cycling s. Automation, Fix idustrial Automation 1 – Ratio control Predictive Control	g method g method g method ced Auto ion – Ser – Casca l	d – Dan mation – sors.	nped os - Progra rol – Ir	Periods: cillation Periods: ammable Periods: ferential	CO2 09 CO3 09 CO4 09 CO5				
and PID Control mUNIT-IIIFINPID Tuning $-$ Prmethod, IntroductiUNIT-IVUNIT-IVCOHistory of Automation $-$ FlexUNIT-VMUMethods of procecontrol, IntroductionTotal Contact H	An only proportional, single speed in nodes –Electronic PID controller – And CONTROL ELEMENTS occess reaction curve method – Controller ONTROLLER TUNING NTROLLER TUNING NATIONAL CONTROL Station – Architecture of Industrial Stible Automation, Components of In ULTILOOP CONTROL Station – Feed-forward contro on to multivariable control– Model fours: 45 Tutorial Hours:00	oating, integral ar Auto transfer - Res Continuous-cycling s. Automation, Fix ndustrial Automation 1 – Ratio control Predictive Contro Practica	g method ced Auto ion – Ser – Casc: 1 I Hours:	d – Dan mation – sors. ade contr	nped os - Progra rol – In Tot	- PI, PD Periods: cillation Periods: ammable Periods: ferential tal Hours:	CO2 09 CO3 09 CO4 09 CO5 45				
and PID Control m UNIT-III FIN PID Tuning – Pr method, Introducti UNIT-IV CO History of Automation – Flex UNIT-V MU Methods of proce control, Introduction Total Contact H Reference Book:	An only proportional, single speed in nodes –Electronic PID controller – NAL CONTROL ELEMENTS ocess reaction curve method – C on to Auto tuning of PID controller DATROLLER TUNING nation – Architecture of Industrial tible Automation, Components of In JLTILOOP CONTROL ess control – Feed-forward contro on to multivariable control– Model fours: 45 Tutorial Hours:00	oating, integral ar Auto transfer - Res Continuous-cycling 's. Automation, Fix ndustrial Automati 1 – Ratio control Predictive Control Practica	g method g method and Auto ion – Ser – Casca l Hours:	d – Dan mation – isors. ade contr	nped os - Progra rol – Ir Tot	 PI, PD Periods: cillation Periods: ammable Periods: aferential tal Hours: 	CO2 09 CO3 09 CO4 09 CO5 :45				
and PID Control mUNIT-IIIFINPID Tuning - Prmethod, IntroductiUNIT-IVCOHistory of Automation - FlexUNIT-VMUMethods of procecontrol, IntroductiTotal Contact HReference Book:1. Myke King, "Pr	in-oil, proportional, single speed in nodes –Electronic PID controller – NAL CONTROL ELEMENTS occess reaction curve method – Controller on to Auto tuning of PID controller NTROLLER TUNING nation – Architecture of Industrial tible Automation, Components of In JLTILOOP CONTROL ss control – Feed-forward controlon to multivariable control– Model fours: 45 Tutorial Hours:00 roccess Control: A Practical Approace	oating, integral ar Auto transfer - Res Continuous-cycling rs. Automation, Fix ndustrial Automation I – Ratio control Predictive Control Practica ch", John Wiley &	g method g method ced Auto ion – Ser – Casca l I Hours:	d – Dan mation – isors. ade contr 00	nped os - Progra rol – Ir Tot	- PI, PD Periods: cillation Periods: ammable Periods: ferential tal Hours:	CO2 09 CO3 09 CO4 09 CO5 :45				
and PID Control mUNIT-IIIFINPID Tuning - Prmethod, IntroductiUNIT-IVCOHistory of Automation - FlexUNIT-VMUMethods of procecontrol, IntroductiTotal Contact HReference Book:1. Myke King, "Pr2. D. Patranabis, "	An-oni, proportional, single speed in nodes –Electronic PID controller – NAL CONTROL ELEMENTS occess reaction curve method – C on to Auto tuning of PID controller NTROLLER TUNING nation – Architecture of Industrial tible Automation, Components of In ULTILOOP CONTROL ress control – Feed-forward control on to multivariable control– Model Tutorial Hours:00 rocess Control: A Practical Approace Principles of Process Control," Tat	oating, integral ar Auto transfer - Res Continuous-cycling s. Automation, Fix ndustrial Automation l – Ratio control Predictive Control Predictive Contro Practica ch", John Wiley & a McGraw Hill Ed	g method ced Auto ion – Ser – Casca 1 I Hours: Sons, 20 lucation,	tive cont ip d – Dan mation – isors. ade contr 00 016 2012	nped os - Progra rol – In Tot	 PI, PD Periods: cillation Periods: ammable Periods: aferential tal Hours: 	CO2 09 CO3 09 CO4 09 CO5 45				

4.Dale E. Seborg, Duncan A. Mellichamp, Thomas F. Edgar, Francis J. Doyle, "Process Dynamics and Control", Technology & Engineering – 2010.

COs	Program Outcomes (POs)													gram cific omes Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO3	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO4	3	3	1	-	-	-	-	-	-	-	-	1	1	-
CO5	3	2	1	-	-	-	-	-	-	-	-	1	1	-
AV	3	2.8	1	-	-	-	-	-	-	-	-	1	1	-
Department: Elect	rical and Electronics Engineering	Program	Programme: B.Tech., (EE)											
---	---	---	--------------------------------	--------------------------	-----------------------	----------	-----------	----------------------	--	--				
Semester: -		Subjec	Subject Category: OEC Semester					Exam Type: TY						
Cauraa Cada	Course	Pe	Period / Week		Credit	Ma	iximum M	arks						
Course Code	Course	L	Т	Р	C	CA	SE	TM						
EEA306	ELECTRIC AND HYBRID VEHICLES	3	-	-	3	25	75	100						
Prerequisite	equisite -													
Course Outcome	Course (Lev	el											
CO1	CO1 Identify the importance of hybrid electric vehicle													
CO2	Explicate the different train topologies and power flow control in electric University vehicles													
CO3	CO3 Choose a suitable drive scheme for developing an electric hybrid vehicle Und depending on resources													
CO4	Analyse the different types of ele	Analyse												
CO5	Choose proper energy storage sy	Choose proper energy storage systems for vehicle applications												
UNIT-I IN'	INTRODUCTION TO HYBRID ELECTRIC VEHICLES Periods: 0													
History of hybrid and electric vehicles, social and environmental importance of hybrid and electric C														
vehicles, impact of modern drive-trains on energy supplies.														
UNIT-II ELECTRIC DRIVE-TRAINS Periods: 09														
topologies, power	flow control in electric drive-train	topologie	s, fuel ef	ficiency a	nous eie analysis	ctric dr	ive-train	CO2						
UNIT-III HY	BRID ELECTRIC DRIVE-TR	AINS	_,	j	<i>j</i>		Periods:	09						
Hybrid Electric D topologies, power	rive-trains: Basic concept of hybr flow control in hybrid drive-train	id traction	, introdu s. fuel eff	ction to v ficiency a	various h nalvsis.	ybrid dr	ive-train	CO3						
UNIT-IV EL	ECTRIC PROPULSION UNIT	1 8)	2	5		Periods:	09						
Introduction to ele Motor Drives, Ind	ectric components used in hybrid uction Motor drives. Permanent M	and electr	ic vehicl ves. Swit	es, Confi	guration uctance I	and con	trol- DC	CO4						
UNIT-V EN	ERGY STORAGE						Periods:	09						
Introduction to E	nergy Storage Requirements in	Hybrid aı	nd Electi	ric Vehic	les, Ene	rgy Stor	rage and							
Analysis- Battery, Fuel, Super Capacitor, Hybridization of different energy storage devices. Power CO5														
Electronic Converter for Battery Charging.														
Total Contact Hours: 45 Tutorial Hours:00 Practical Hours: 00 Total Hours: 4														
Reference Book:														
1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2 nd Edition, 2003														
2. MehrdadEhsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell														
Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.														
3. James Larminie, John Lowry, Electric Vehicle Technology Explained, John Wiley & Sons, 2003														

COs	Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PSO1	PSO2		
CO1	2	2	1	-	-	-	2	-	-	-	-	2	2	2
CO2	2	2	1	-	-	-	2	-	-	-	-	2	2	2
CO3	2	2	1	-	-	-	2	-	-	-	-	2	2	2
CO4	2	2	1	-	-	-	2	-	-	-	-	2	2	2
CO5	2	2	1	-	-	-	2	-	-	-	-	2	2	2
AV	2	2	1	-	-	-	2	-	-	-	-	2	2	2

MAPPING OF CO'S WITH PO'S AND PSO'S

Department: Elect	rical and Electronics Engineering	Programme: B.Tech., (EE)								
Semester: -		Subject Category: OEC Semester					Exam Type: TY			
0 0 1	C	Pe	riod / W	eek	Credit	Ma	ximum M	arks		
Course Code	Course	L	Т	Р	С	CA	SE	TM		
EEA307	WIRING, ESTIMATION AND COSTING	3	-	-	3	25	75	100		
Prerequisite	-									
Course Outcome	Course Or	utcome S	tatement		Lev	'el				
CO1	Discuss basic wiring system and l	ighting A	cessorie	s.			Understand			
CO2	Explain the basic protective system	n used fo	or variou	s consum	ers.		Understand			
CO3	Design a layout for internal wiring	g for vari	ous cons	umers			Apply			
CO4	Attain basic knowledge on the equ	uipments/	cables u	sed for ex	ternal w	iring.	Apply			
CO5	Prepare an estimate based on marl	ket rate a	nd Govt.	schedule	rate.		Apply			
UNIT-I IN	TRODUCTION						Periods: 09			
Wires, Wire Splicing and Termination, Types and Installation of Wiring Systems Lighting According								001		
Electrical Symbols	Electrical Symbols.									
UNIT-II PROTECTIVE DEVICES Periods: (
Introduction, Protective devices used in Residential, Commercial and Industrial buildings for protection										
of wiring system, Fuse, MCB, MCCB, ELCB/RCCB, RCBO, SPD and other Circuit Breakers.										
UNIT-III INTERNAL WIRING SYSTEM AND LAMP CIRCUITS Per								09		
Design and Draw	ving of Internal wiring system for	or variou	s types	of Resid	lential, (Commer	cial and			
Industrial building	s, Electrical layout, Different types	s of circu	iits, Ligh	t circuit,	Power c	ircuit, S	ub-main	CO3		
wiring, Main wirir	ng, Single Line diagram. Load Calcu	ulation.								
UNIT-IV EX	TERNAL WIRING SYSTEM						Periods: 09			
Introduction, Diffe	erent types of Under Ground (UG) Cables	, Cable 1	Laying, H	Electrical	Contro	l Panels,			
Feeder Pillar, Exte	ernal Electrical Distribution System	n, Single	Line Dia	agram, Lo	oad Cale	ulations,	General	CO4		
Specifications of C	Generating Set, Transformer, Circuit	t Breaker	'S							
UNIT-V ES	TIMATING AND COSTING						Periods:	09		
Introduction, Estin	mating and Costing of Internal ar	nd Extern	nal Wiri	ng Syster	m (a) ba	ised upo	on actual	CO5		
measurement and prevailing market rate and rate analysis (b) based upon Government Schedule of rates.										
Total Contact Hours: 45Tutorial Hours:00Practical Hours: 00Total Hours:45										
Reference Book:										
1. Dr. S L Uppal and G C Garg, "Electrical Wiring, Estimating and costing", Khanna publishers, 6th Edition,										
2010.										
2. J.B. Gupta, "A Course in Electrical Installation Estimating and Costing", S K Kataria& Sons, 2013.										
3. William E. Steward, T. A. Stubbs, Trevor E. Marks, Steve Clarke, Modern Wiring Practice: Design and										
Installation, Taylor and Francis, 22 nd Edition, 2012.										

M. A. Laughton D.F. Warne, "Electrical Engineers Reference Book", Elsevier, 2002.

COs	Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PSO1	PSO2		
CO1	1	1	1	-	-	-	2	-	-	-	-	1	2	-
CO2	1	1	1	-	-	-	2	-	-	-	-	1	2	-
CO3	1	1	1	-	-	-	2	-	-	-	-	1	2	-
CO4	1	1	1	-	-	-	2	-	-	-	-	1	2	-
CO5	1	1	1	-	-	-	2	-	-	-	-	1	2	-
AV	1	1	1	-	-	-	2	-	-	-	-	1	2	-

MAPPING OF CO'S WITH PO'S AND PSO'S